Show simple item record

dc.contributor.authorBeard, Michael
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.date.accessioned2023-03-09T08:04:32Z
dc.date.available2023-03-09T08:04:32Z
dc.date.issued2020
dc.identifier.citationBeard, M. and Vo, B.T. and Vo, B.N. 2020. A Solution for Large-Scale Multi-Object Tracking. IEEE Transactions on Signal Processing. 68: pp. 2754-2769.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90795
dc.identifier.doi10.1109/TSP.2020.2986136
dc.description.abstract

A large-scale multi-object tracker based on the generalised labeled multi-Bernoulli (GLMB) filter is proposed. The algorithm is capable of tracking a very large, unknown and time-varying number of objects simultaneously, in the presence of a high number of false alarms, as well as missed detections and measurement origin uncertainty due to closely spaced objects. The algorithm is demonstrated on a simulated tracking scenario, where the peak number objects appearing simultaneously exceeds one million. Additionally, we introduce a new method of applying the optimal sub-pattern assignment (OSPA) metric to determine a meaningful distance between two sets of tracks. We also develop an efficient strategy for its exact computation in large-scale scenarios to evaluate the performance of the proposed tracker.

dc.languageEnglish
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering
dc.subjectRadio frequency
dc.subjectTarget tracking
dc.subjectSignal processing algorithms
dc.subjectApproximation algorithms
dc.subjectTrajectory
dc.subjectRandom finite sets
dc.subjectgeneralised labeled multi-Bernoulli
dc.subjectmulti-object tracking
dc.subjectlarge-scale tracking
dc.subjectOSPA
dc.subjectRANDOM FINITE SETS
dc.subjectMULTITARGET TRACKING
dc.subjectPERFORMANCE EVALUATION
dc.subjectDISTRIBUTED FUSION
dc.subjectBERNOULLI FILTER
dc.subjectALGORITHMS
dc.titleA Solution for Large-Scale Multi-Object Tracking
dc.typeJournal Article
dcterms.source.volume68
dcterms.source.startPage2754
dcterms.source.endPage2769
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing
dc.date.updated2023-03-09T08:04:32Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidVo, Ba Tuong [0000-0002-3954-238X]
curtin.contributor.orcidVo, Ba-Ngu [0000-0003-4202-7722]
dcterms.source.eissn1941-0476
curtin.contributor.scopusauthoridBeard, Michael [7102922439]
curtin.contributor.scopusauthoridVo, Ba Tuong [9846846600]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/