Show simple item record

dc.contributor.authorNguyen, Tran Thien Dat
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorKim, Du Yong
dc.contributor.authorChoi, Y.S.
dc.date.accessioned2023-03-09T08:05:10Z
dc.date.available2023-03-09T08:05:10Z
dc.date.issued2021
dc.identifier.citationNguyen, T.T.D. and Vo, B.N. and Vo, B.T. and Kim, D.Y. and Choi, Y.S. 2021. Tracking Cells and Their Lineages Via Labeled Random Finite Sets. IEEE Transactions on Signal Processing. 69: pp. 5611-5626.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90796
dc.identifier.doi10.1109/TSP.2021.3111705
dc.description.abstract

Determining the trajectories of cells and their lineages or ancestries in live-cell experiments are fundamental to the understanding of how cells behave and divide. This paper proposes novel online algorithms for jointly tracking and resolving lineages of an unknown and time-varying number of cells from time-lapse video data. Our approach involves modeling the cell ensemble as a labeled random finite set with labels representing cell identities and lineages. A spawning model is developed to take into account cell lineages and changes in cell appearance prior to division. We then derive analytic filters to propagate multi-object distributions that contain information on the current cell ensemble including their lineages. We also develop numerical implementations of the resulting multi-object filters. Experiments using simulation, synthetic cell migration video, and real time-lapse sequence, are presented to demonstrate the capability of the solutions.

dc.languageEnglish
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering
dc.subjectLicenses
dc.subjectCell tracking
dc.subjectlineages inference
dc.subjectRandom Finite Sets
dc.subjectmulti-object tracking
dc.subjectMICROSCOPY IMAGE SEQUENCES
dc.subjectMULTIPLE OBJECT TRACKING
dc.subjectMITOSIS DETECTION
dc.subjectMULTITARGET TRACKING
dc.subjectALGORITHM
dc.subjectSEGMENTATION
dc.subjectPOPULATIONS
dc.subjectASSIGNMENTS
dc.subjectFRAMEWORK
dc.subjectRANKING
dc.titleTracking Cells and Their Lineages Via Labeled Random Finite Sets
dc.typeJournal Article
dcterms.source.volume69
dcterms.source.startPage5611
dcterms.source.endPage5626
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing
dc.date.updated2023-03-09T08:05:10Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidVo, Ba Tuong [0000-0002-3954-238X]
curtin.contributor.orcidNguyen, Tran Thien Dat [0000-0001-9185-4009]
curtin.contributor.orcidVo, Ba-Ngu [0000-0003-4202-7722]
dcterms.source.eissn1941-0476
curtin.contributor.scopusauthoridVo, Ba Tuong [9846846600]
curtin.contributor.scopusauthoridKim, Du Yong [57193417073]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/