Show simple item record

dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorBeard, Michael
dc.date.accessioned2023-03-09T08:08:58Z
dc.date.available2023-03-09T08:08:58Z
dc.date.issued2019
dc.identifier.citationVo, B.N. and Vo, B.T. and Beard, M. 2019. Multi-Sensor Multi-Object Tracking with the Generalized Labeled Multi-Bernoulli Filter. IEEE Transactions on Signal Processing. 67 (23): pp. 5952-5967.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90802
dc.identifier.doi10.1109/TSP.2019.2946023
dc.description.abstract

This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. Like its single-sensor counterpart, such implementation requires truncating the GLMB sum. However the single-sensor case requires solving 2-D ranked assignment problems whereas the multi-sensor case require solving multi-dimensional ranked assignment problems, which are NP-hard. The proposed implementation exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a quadratic complexity in the number of hypothesized objects and linear in the total number of measurements from all sensors.

dc.languageEnglish
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP170104854
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering
dc.subjectState estimation
dc.subjectFiltering
dc.subjectRandom finite sets
dc.subjectMulti-dimensional assignment
dc.subjectGibbs sampling
dc.subjectRANDOM FINITE SETS
dc.subjectDISTRIBUTED FUSION
dc.subjectMONTE-CARLO
dc.subjectLOCALIZATION
dc.titleMulti-Sensor Multi-Object Tracking with the Generalized Labeled Multi-Bernoulli Filter
dc.typeJournal Article
dcterms.source.volume67
dcterms.source.number23
dcterms.source.startPage5952
dcterms.source.endPage5967
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing
dc.date.updated2023-03-09T08:08:58Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidVo, Ba Tuong [0000-0002-3954-238X]
curtin.contributor.orcidVo, Ba-Ngu [0000-0003-4202-7722]
dcterms.source.eissn1941-0476
curtin.contributor.scopusauthoridVo, Ba Tuong [9846846600]
curtin.contributor.scopusauthoridBeard, Michael [7102922439]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/