Multi-Sensor Multi-Object Tracking with the Generalized Labeled Multi-Bernoulli Filter
dc.contributor.author | Vo, Ba-Ngu | |
dc.contributor.author | Vo, Ba Tuong | |
dc.contributor.author | Beard, Michael | |
dc.date.accessioned | 2023-03-09T08:08:58Z | |
dc.date.available | 2023-03-09T08:08:58Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Vo, B.N. and Vo, B.T. and Beard, M. 2019. Multi-Sensor Multi-Object Tracking with the Generalized Labeled Multi-Bernoulli Filter. IEEE Transactions on Signal Processing. 67 (23): pp. 5952-5967. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/90802 | |
dc.identifier.doi | 10.1109/TSP.2019.2946023 | |
dc.description.abstract |
This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. Like its single-sensor counterpart, such implementation requires truncating the GLMB sum. However the single-sensor case requires solving 2-D ranked assignment problems whereas the multi-sensor case require solving multi-dimensional ranked assignment problems, which are NP-hard. The proposed implementation exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a quadratic complexity in the number of hypothesized objects and linear in the total number of measurements from all sensors. | |
dc.language | English | |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP170104854 | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP160104662 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Science & Technology | |
dc.subject | Technology | |
dc.subject | Engineering, Electrical & Electronic | |
dc.subject | Engineering | |
dc.subject | State estimation | |
dc.subject | Filtering | |
dc.subject | Random finite sets | |
dc.subject | Multi-dimensional assignment | |
dc.subject | Gibbs sampling | |
dc.subject | RANDOM FINITE SETS | |
dc.subject | DISTRIBUTED FUSION | |
dc.subject | MONTE-CARLO | |
dc.subject | LOCALIZATION | |
dc.title | Multi-Sensor Multi-Object Tracking with the Generalized Labeled Multi-Bernoulli Filter | |
dc.type | Journal Article | |
dcterms.source.volume | 67 | |
dcterms.source.number | 23 | |
dcterms.source.startPage | 5952 | |
dcterms.source.endPage | 5967 | |
dcterms.source.issn | 1053-587X | |
dcterms.source.title | IEEE Transactions on Signal Processing | |
dc.date.updated | 2023-03-09T08:08:58Z | |
curtin.department | School of Elec Eng, Comp and Math Sci (EECMS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Vo, Ba Tuong [0000-0002-3954-238X] | |
curtin.contributor.orcid | Vo, Ba-Ngu [0000-0003-4202-7722] | |
dcterms.source.eissn | 1941-0476 | |
curtin.contributor.scopusauthorid | Vo, Ba Tuong [9846846600] | |
curtin.contributor.scopusauthorid | Beard, Michael [7102922439] |