Show simple item record

dc.contributor.authorHan, N.
dc.contributor.authorGuo, X.
dc.contributor.authorCheng, J.
dc.contributor.authorLiu, P.
dc.contributor.authorZhang, S.
dc.contributor.authorHuang, S.
dc.contributor.authorRowles, Matthew
dc.contributor.authorFransaer, J.
dc.contributor.authorLiu, Shaomin
dc.date.accessioned2023-03-14T04:06:58Z
dc.date.available2023-03-14T04:06:58Z
dc.date.issued2021
dc.identifier.citationHan, N. and Guo, X. and Cheng, J. and Liu, P. and Zhang, S. and Huang, S. and Rowles, M.R. et al. 2021. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter. 4 (5): pp. 1720-1734.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90866
dc.identifier.doi10.1016/j.matt.2021.02.019
dc.description.abstract

Ruddlesden-Popper perovskite oxide (An+1BnO3n+1) mixed ionic-electronic conducting membranes are proposed as a new method for oxygen separation from air. Element doping was used to improve the ionic conductivity and to stabilize the crystal structure. The doping of orthorhombic Pr2NiO4 with Mo resulted in the ex situ collapse of the crystal together with the generation of impurities by the rearrangement of Pr atoms. Mo doping also inhibited the in situ phase transition from low-order Pr2NiO4 to high-order Pr4Ni3O10 by weakening the covalent interaction between Pr and O. Membranes made from Pr2Ni0.95Mo0.05O4+δ showed an oxygen flux of 3.35 mL min−1 cm−2 at 1,000°C, high permeation stability in air and helium, and high CO2 tolerance with no decline of oxygen flux during 500 h at 900°C. This work advances a comprehensive understanding of phase transitions on Pr2Ni1−xMoxO4 and provides an effective way to improve the oxygen permeability via in situ stabilization of the phase structure.

dc.languageEnglish
dc.publisherELSEVIER
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP180103861
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMaterials Science
dc.subjectHOLLOW-FIBER MEMBRANES
dc.subjectPARTIAL OXIDATION
dc.subjectION CONDUCTORS
dc.subjectOXIDE
dc.subjectMETHANE
dc.subjectCONDUCTIVITY
dc.subjectPERMEABILITY
dc.subjectSEPARATION
dc.subjectSTABILITY
dc.subjectLAYERS
dc.titleInhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation
dc.typeJournal Article
dcterms.source.volume4
dcterms.source.number5
dcterms.source.startPage1720
dcterms.source.endPage1734
dcterms.source.issn2590-2393
dcterms.source.titleMatter
dc.date.updated2023-03-14T04:06:58Z
curtin.departmentJohn de Laeter Centre (JdLC)
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.accessStatusOpen access via publisher
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidLiu, Shaomin [0000-0001-5019-5182]
curtin.contributor.orcidRowles, Matthew [0000-0002-7448-6774]
curtin.contributor.researcheridLiu, Shaomin [E-3669-2010]
dcterms.source.eissn2590-2385
curtin.contributor.scopusauthoridLiu, Shaomin [35242760200] [57202650578]
curtin.contributor.scopusauthoridRowles, Matthew [24476696900]
curtin.repositoryagreementV3


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record