Tuning the Electron Localization of Gold Enables the Control of Nitrogen-to-Ammonia Fixation
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Remarks
This is the peer reviewed version of the following article: J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang, Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 18604, which has been published in final form at https://doi.org/10.1002/anie.201909477. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Collection
Abstract
The (photo)electrochemical N2 reduction reaction (NRR) provides a favorable avenue for the production of NH3 using renewable energy in mild operating conditions. Understanding and building an efficient catalyst with high NH3 selectivity represents an area of intense interest for the early stages of development for NRR. Herein, we introduce a CoOx layer to tune the local electronic structure of Au nanoparticles with positive valence sites for boosting conversion of N2 to NH3. The catalysts, possessing high average oxidation states (ca. 40 %), achieve a high NH3 yield rate of 15.1 μg cm−2 h−1 and a good faradic efficiency of 19 % at −0.5 V versus reversible hydrogen electrode. Experimental results and simulations reveal that the ability to tune the oxidation state of Au enables the control of N2 adsorption and the concomitant energy barrier of NRR. Altering the Au oxidation state provides a unique strategy for control of NRR in the production of valuable NH3.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Yu, Yun (2009)Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
-
Syed Hassan, Syed Shatir Asghrar (2010)The conversion of light hydrocarbons with solid catalysts is an important class of reactions in the chemical and energy industries. Our knowledge on the exceedingly complex reaction kinetics of these catalytic reactions, ...