The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record
Access Status
Authors
Date
2020Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population (n = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.
Related items
Showing items related by title, author, creator and subject.
-
Kirkland, Chris; Slagstad, T.; Johnson, Tim (2018)© 2018 International Association for Gondwana Research. During metamorphism, inherited or detrital zircon grains commonly serve as a template onto which new generations of metamorphic zircon precipitates, charting successive ...
-
Spencer, Christopher; Kirkland, Chris; Roberts, N. (2018)Isotopic analysis of zircon has been useful in charting our planet's geological history from the Holocene to the Hadean. Zircon is present in a range of lithologies, yet its yield in sedimentary systems is governed by the ...
-
Bouvier, L.; Costa, M.; Connelly, J.; Jensen, N.; Wielandt, D.; Storey, M.; Nemchin, Alexander; Whitehouse, M.; Snape, J.; Bellucci, J.; Moynier, F.; Agranier, A.; Gueguen, B.; Schönbächler, M.; Bizzarro, M. (2018)The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation ...