Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Shear Wave Splitting Discloses Two Episodes of Collision-Related Convergence in Western North America

    Access Status
    Open access via publisher
    Authors
    Wu, Lei
    Gu, Y.J.
    Chen, Y.
    Liang, H.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wu, L. and Gu, Y.J. and Chen, Y. and Liang, H. 2019. Shear Wave Splitting Discloses Two Episodes of Collision-Related Convergence in Western North America. Journal of Geophysical Research: Solid Earth. 124 (3): pp. 2990-3010.
    Source Title
    Journal of Geophysical Research: Solid Earth
    DOI
    10.1029/2018JB016352
    ISSN
    2169-9313
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/FL150100133
    URI
    http://hdl.handle.net/20.500.11937/91011
    Collection
    • Curtin Research Publications
    Abstract

    Seismic anisotropy imposes first-order constraints on the strain history of crust and upper mantle rocks. In this study, we analyze the mantle seismic anisotropy of the Western Canada Sedimentary Basin using a new shear wave spitting data set consisting of 1,333 teleseismic arrivals from 82 seismic stations. The resulting 332 high-quality measurements yield a regional mean apparent splitting time (i.e., the magnitude of anisotropy) of 1.1 ± 0.3 s and an average fast orientation (i.e., the direction of anisotropy) of 54.6° ± 17.2°, which favor a two-layer anisotropic model based on the 90° back azimuthal periodicity in both parameters. The northeast trending fast orientations dominate the lower layer at lithospheric depths and are approximately parallel to the present-day absolute plate motions (APMs; i.e., <35°) due to the active asthenospheric flow. On the other hand, deviations from the APMs along the Canadian Rocky Mountain foothills could reflect disrupted mantle flow surrounding a southwestward migrating cratonic lithosphere. Also revealed are two elongated upper-layer anisotropic anomalies in the lithosphere that are spatially correlated with Moho depths. Their characteristics suggest frozen-in anisotropy imprinted along two convergent boundaries: (1) the Paleoproterozoic Snowbird Tectonic Zone that separates northeast (north) from northwest (south) fast directions and (2) the foothills of the Rocky Mountains that exhibit northeast trending orientations consistent with those of the APMs, maximum crustal stress, and electromagnetic anisotropy. Compressions associated with the Cordilleran orogenesis could be responsible for the spatial changes in the shear wave anisotropy from the foothills to the cratonic interior.

    Related items

    Showing items related by title, author, creator and subject.

    • Joint non-linear inversion of amplitudes and travel times in a vertical transversely isotropic medium using compressional and converted shear waves
      Nadri, Dariush (2008)
      Massive shales and fractures are the main cause of seismic anisotropy in the upper-most part of the crust, caused either by sedimentary or tectonic processes. Neglecting the effect of seismic anisotropy in seismic processing ...
    • Estimation of azimuthal anisotropy from VSP data using multicomponent S-wave velocity analysis
      Pevzner, Roman; Gurevich, Boris; Urosevic, Milovan (2011)
      Observation of azimuthal shear wave anisotropy can be useful for characterization of fractures or stress fields. Shear wave anisotropy is often estimated by measuring splitting of individual shear wave events in vertical ...
    • Estimating azimuthal stress-induced P-wave anisotropy from S-wave anisotropy using sonic log or vertical seismic profile data
      Collet, O.; Gurevich, Boris; Duncan, G. (2015)
      Most sedimentary rocks are anisotropic, yet it is often difficult to accurately incorporate anisotropy into seismic workflows because analysis of anisotropy requires knowledge of a number of parameters that are difficult ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.