Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An augmented lagrangian decomposition method for chance-constrained optimization problems

    91252.pdf (492.9Kb)
    Access Status
    Open access
    Authors
    Bai, X.
    Sun, Jie
    Zheng, X.
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bai, X. and Sun, J. and Zheng, X. 2021. An augmented lagrangian decomposition method for chance-constrained optimization problems. INFORMS Journal on Computing. 33 (3): pp. 1056-1069.
    Source Title
    INFORMS Journal on Computing
    DOI
    10.1287/ijoc.2020.1001
    ISSN
    1091-9856
    Faculty
    Faculty of Science and Engineering
    School
    School of Elec Eng, Comp and Math Sci (EECMS)
    URI
    http://hdl.handle.net/20.500.11937/91428
    Collection
    • Curtin Research Publications
    Abstract

    Joint chance-constrained optimization problems under discrete distributions arise frequently in financial management and business operations. These problems can be reformulated as mixed-integer programs. The size of reformulated integer programs is usually very large even though the original problem is of medium size. This paper studies an augmented Lagrangian decomposition method for finding high-quality feasible solutions of complex optimization problems, including nonconvex chance-constrained problems. Different from the current augmented Lagrangian approaches, the proposed method allows randomness to appear in both the left-hand-side matrix and the right-hand-side vector of the chance constraint. In addition, the proposed method only requires solving a convex subproblem and a 0-1 knapsack subproblem at each iteration. Based on the special structure of the chance constraint, the 0-1 knapsack problem can be computed in quasi-linear time, which keeps the computation for discrete optimization subproblems at a relatively low level. The convergence of the method to a first-order stationary point is established under certain mild conditions. Numerical results are presented in comparison with a set of existing methods in the literature for various real-world models. It is observed that the proposed method compares favorably in terms of the quality of the best feasible solution obtained within a certain time for large-size problems, particularly when the objective function of the problem is nonconvex or the left-hand-side matrix of the constraints is random.

    Related items

    Showing items related by title, author, creator and subject.

    • Iterative algorithms for envelope-constrained filter design.
      Tseng, Chien H. (1999)
      The design of envelope-constrained (EC) filters is considered for the time-domain synthesis of filters for signal processing problems. The objective is to achieve minimal noise enhancement where the shape of the filter ...
    • Optimal control problems with constraints on the state and control and their applications
      Li, Bin (2011)
      In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
    • Global optimization for nonconvex optimization problems
      Ruan, Ning (2012)
      Duality is one of the most successful ideas in modern science [46] [91]. It is essential in natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis, we consider the canonical duality ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.