Show simple item record

dc.contributor.authorPang, J.S.
dc.contributor.authorSun, D.
dc.contributor.authorSun, Jie
dc.date.accessioned2023-04-16T11:54:19Z
dc.date.available2023-04-16T11:54:19Z
dc.date.issued2003
dc.identifier.citationPang, J.S. and Sun, D. and Sun, J. 2003. Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research. 28 (1): pp. 39-63.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91450
dc.identifier.doi10.1287/moor.28.1.39.14258
dc.description.abstract

Based on an inverse function theorem for a system of semismooth equations, this paper establishes several necessary and sufficient conditions for an isolated solution of a complementarity problem defined on the cone of symmetric positive semidefinite matrices to be strongly regular/stable. We show further that for a parametric complementarity problem of this kind, if a solution corresponding to a base parameter is strongly stable, then a semismooth implicit solution function exists whose directional derivatives can be computed by solving certain affine problems on the critical cone at the base solution. Similar results are also derived for a complementarity problem defined on the Lorentz cone. The analysis relies on some new properties of the directional derivatives of the projector onto the semidefinite cone and the Lorentz cone.

dc.languageEnglish
dc.publisherInstitute for Operations Research and the Management Sciences (I N F O R M S)
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectOperations Research & Management Science
dc.subjectMathematics, Applied
dc.subjectMathematics
dc.subjectcomplementarity problem
dc.subjectvariational inequality
dc.subjectsemidefinite cone
dc.subjectLorentz cone
dc.subjectIMPLICIT-FUNCTION THEOREM
dc.subjectVARIATIONAL-INEQUALITIES
dc.subjectNEWTON METHOD
dc.subjectSENSITIVITY-ANALYSIS
dc.subjectMETRIC PROJECTIONS
dc.subjectNORMAL MAPS
dc.subjectEQUATIONS
dc.subjectDIFFERENTIABILITY
dc.subjectOPTIMIZATION
dc.subjectPROGRAMS
dc.titleSemismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems
dc.typeJournal Article
dcterms.source.volume28
dcterms.source.number1
dcterms.source.startPage39
dcterms.source.endPage63
dcterms.source.issn0364-765X
dcterms.source.titleMathematics of Operations Research
dcterms.source.placeUnited States
dc.date.updated2023-04-16T11:54:19Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidSun, Jie [0000-0001-5611-1672]
curtin.contributor.researcheridSun, Jie [B-7926-2016] [G-3522-2010]
dcterms.source.eissn1526-5471
curtin.contributor.scopusauthoridSun, Jie [16312754600] [57190212842]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record