Effect of cellulose-lignin interactions on char structural changes during fast pyrolysis at 100-350 °c
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
This study investigates the cellulose-lignin interactions during fast pyrolysis at 100-350°C for better understanding fundamental pyrolysis mechanism of lignocellulosic biomass. The results show that co-pyrolysis of cellulose and lignin (with a mass ratio of 1:1) at temperatures < 300 °C leads to a char yield lower than the calculated char yield based on the addition of individual cellulose and lignin pyrolysis. The difference between the experimental and calculated char yields increases with temperature, from ∼2% 150 °C to ∼6% at 250 °C. Such differences in char yields provide direct evidences on the existence of cellulose-lignin interactions during co-pyrolysis of cellulose and lignin. At temperatures below 300 °C, the reductions in both lignin functional groups and sugar structures within the char indicate that co-pyrolysis of cellulose and lignin enhances the release of volatiles from both cellulose and lignin. Such an observation could be attributed to two possible reasons: (1) the stabilization of lignin-derived reactive species by cellulose-derived reaction intermediates as hydrogen donors, and (2) the thermal ejection of cellulose-derived species due to micro-explosion of liquid intermediates from lignin. In contrast, at temperatures ≥ 300 °C, co-pyrolysis of cellulose and lignin increases char yields, i.e., with the difference between the experimental and calculated char yields increasing from ∼1% at 300 °C to ∼8% at 350 °C. The results indicate that the cellulose-derived volatiles are difficult to diffuse through the lignin-derived liquid intermediates into the vapor phase, leading to increased char formation from co-pyrolysis of cellulose and lignin as temperature increases. Such an observation is further supported by the increased retention of cellulose functional groups in the char from co-pyrolysis of cellulose and lignin.
Related items
Showing items related by title, author, creator and subject.
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
-
Terry, L.M.; Wee, Melvin Xin Jie; Chew, J.J.; Khaerudini, D.S.; Timuda, G.E.; Aqsha, A.; Saptoro, Agus ; Sunarso, J. (2023)Pyrolysis oil can be used as a precursor to synthesize value-added biochemicals. Co-pyrolysis of two or more feedstocks generally improves the selectivity and yield of the target compounds. In this work, oil palm trunk ...
-
Chua, Yee Wen; Yu, Yun; Wu, Hongwei (2017)Abstract A pyrolytic lignin, separated from the bio-oil generated from biomass fast pyrolysis bio-oil at 500 °C via cold-water extraction, was thermally decomposed in a drop-tube/fixed-bed reactor under inert conditions ...