Show simple item record

dc.contributor.authorSöngen, H.
dc.contributor.authorSilvestri, A.
dc.contributor.authorRoshni, T.
dc.contributor.authorKlassen, S.
dc.contributor.authorBechstein, R.
dc.contributor.authorRaiteri, Paolo
dc.contributor.authorGale, Julian
dc.contributor.authorKühnle, A.
dc.date.accessioned2023-04-18T05:19:37Z
dc.date.available2023-04-18T05:19:37Z
dc.date.issued2021
dc.identifier.citationSöngen, H. and Silvestri, A. and Roshni, T. and Klassen, S. and Bechstein, R. and Raiteri, P. and Gale, J.D. et al. 2021. Does the Structural Water within Gypsum Remain Crystalline at the Aqueous Interface? Journal of Physical Chemistry C. 125 (39): pp. 21670-21677.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91489
dc.identifier.doi10.1021/acs.jpcc.1c06213
dc.description.abstract

Solid-liquid interfaces are omnipresent in nature and technology. Processes occurring at the mineral-water interface are pivotal in geochemistry, biology, as well as in many technological areas. In this context, gypsum—the dihydrate of calcium sulfate—plays a prominent role due to its widespread distribution in the Earth’s crust and its manifold applications in technology. Despite this, many fundamental questions regarding the molecular-scale structure, including the fate of the crystal water molecules at the aqueous interface, remain poorly studied. Here, we present an atomic force microscopy (AFM) and molecular dynamics (MD) investigation to elucidate molecular-level details of the gypsum-water interface. Three-dimensional AFM data shed light into the hydration structure, revealing one water molecule per surface unit cell area in the lowest layer accessible to experiment. Comparing with simulation data suggests that the AFM tip does not penetrate into the surface-bound layer of crystal water. Instead, the first hydration water layer on top of the crystal water is mapped. Our findings indicate that the crystal water at the interface remains tightly bound, even when in contact with bulk water. Thus, the interfacial chemistry is governed by the crystal water rather than the calcium or sulfate ions.

dc.languageEnglish
dc.publisherAMER CHEMICAL SOC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FL180100087
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectSOLID-SURFACES
dc.subjectBASSANITE
dc.subjectDYNAMICS
dc.titleDoes the Structural Water within Gypsum Remain Crystalline at the Aqueous Interface?
dc.typeJournal Article
dcterms.source.volume125
dcterms.source.number39
dcterms.source.startPage21670
dcterms.source.endPage21677
dcterms.source.issn1932-7447
dcterms.source.titleJournal of Physical Chemistry C
dc.date.updated2023-04-18T05:19:35Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidGale, Julian [0000-0001-9587-9457]
curtin.contributor.orcidRaiteri, Paolo [0000-0003-0692-0505]
curtin.contributor.researcheridRaiteri, Paolo [E-1465-2011]
dcterms.source.eissn1932-7455
curtin.contributor.scopusauthoridGale, Julian [7101993408]
curtin.contributor.scopusauthoridRaiteri, Paolo [6602613407]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record