Computational Insights into Mg2+ Dehydration in the Presence of Carbonate
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Water exchange around a free magnesium ion and magnesium paired with carbonate in aqueous solution was studied using free energy methods. Both a rigid-ion and a polarizable force field based on the AMOEBA model were examined. The parameters were adjusted to accurately reproduce the hydration structures of magnesium and carbonate in aqueous solution. The magnesium carbonate ion pairing free energies calculated with both force fields were found to be in excellent agreement with experimental data. Metadynamics simulations of the water exchange conducted with both models revealed that the formation of a contact magnesium carbonate ion pair significantly decreases the energy barrier for water exchange relative to the free magnesium ion in solution. This finding suggests that the presence of carbonate could accelerate the water exchange around magnesium and constitutes a first step toward a better understanding of the atomic-scale mechanisms involved in the nucleation of magnesium-bearing carbonate minerals.
Related items
Showing items related by title, author, creator and subject.
-
Devasahayam, Sheila (2021)The current overarching global environmental crisis relates to high carbon footprint in cement production, waste plastic accumulation, and growing future energy demands. A simultaneous solution to the above crises was ...
-
Dawson, Daniel (2006)Early research into the stable hydrogen isotopic compositions (δD) of petroleum involved bulk deuterium/hydrogen (D/H) measurements which, while providing some useful information, had to contend with the analysis of complex ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...