Estimation of relative risk for events on a linear network
dc.contributor.author | McSwiggan, G. | |
dc.contributor.author | Baddeley, Adrian | |
dc.contributor.author | Nair, G. | |
dc.date.accessioned | 2023-04-19T12:16:38Z | |
dc.date.available | 2023-04-19T12:16:38Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | McSwiggan, G. and Baddeley, A. and Nair, G. 2020. Estimation of relative risk for events on a linear network. Statistics and Computing. 30 (2): pp. 469-484. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/91580 | |
dc.identifier.doi | 10.1007/s11222-019-09889-7 | |
dc.description.abstract |
Motivated by the study of traffic accidents on a road network, we discuss the estimation of the relative risk, the ratio of rates of occurrence of different types of events occurring on a network of lines. Methods developed for two-dimensional spatial point patterns can be adapted to a linear network, but their requirements and performance are very different on a network. Computation is slow and we introduce new techniques to accelerate it. Intensities (occurrence rates) are estimated by kernel smoothing using the heat kernel on the network. The main methodological problem is bandwidth selection. Binary regression methods, such as likelihood cross-validation and least squares cross-validation, perform tolerably well in our simulation experiments, but the Kelsall–Diggle density-ratio cross-validation method does not. We find a theoretical explanation, and propose a modification of the Kelsall–Diggle method which has better performance. The methods are applied to traffic accidents in a regional city, and to protrusions on the dendritic tree of a neuron. | |
dc.language | English | |
dc.publisher | SPRINGER | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP130102322 | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/DP130104470 | |
dc.subject | Science & Technology | |
dc.subject | Technology | |
dc.subject | Physical Sciences | |
dc.subject | Computer Science, Theory & Methods | |
dc.subject | Statistics & Probability | |
dc.subject | Computer Science | |
dc.subject | Mathematics | |
dc.subject | Bandwidth selection | |
dc.subject | Cross-validation | |
dc.subject | Dendritic spines | |
dc.subject | Density ratio | |
dc.subject | Heat kernel | |
dc.subject | Kelsall-Diggle cross-validation | |
dc.subject | Road traffic accidents | |
dc.subject | KERNEL DENSITY-ESTIMATION | |
dc.subject | BANDWIDTH SELECTION | |
dc.subject | CROSS-VALIDATION | |
dc.subject | NONPARAMETRIC-ESTIMATION | |
dc.subject | SPATIAL VARIATION | |
dc.subject | POINT PATTERNS | |
dc.subject | REGRESSION | |
dc.subject | MATRICES | |
dc.subject | DISEASE | |
dc.title | Estimation of relative risk for events on a linear network | |
dc.type | Journal Article | |
dcterms.source.volume | 30 | |
dcterms.source.number | 2 | |
dcterms.source.startPage | 469 | |
dcterms.source.endPage | 484 | |
dcterms.source.issn | 0960-3174 | |
dcterms.source.title | Statistics and Computing | |
dc.date.updated | 2023-04-19T12:16:37Z | |
curtin.department | Curtin School of Population Health | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Health Sciences | |
curtin.contributor.orcid | Baddeley, Adrian [0000-0001-9499-8382] | |
curtin.contributor.researcherid | Baddeley, Adrian [E-3661-2010] | |
dcterms.source.eissn | 1573-1375 | |
curtin.contributor.scopusauthorid | Baddeley, Adrian [7101639465] | |
curtin.repositoryagreement | V3 |