Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A new method for dating impact events – Thermal dependency on nanoscale Pb mobility in monazite shock twins

    Access Status
    Fulltext not available
    Authors
    Fougerouse, Denis
    Cavosie, Aaron
    Erickson, Timmons
    Reddy, Steven
    Cox, M.A.
    Saxey, David
    Rickard, William
    Wingate, M.T.D.
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fougerouse, D. and Cavosie, A.J. and Erickson, T. and Reddy, S.M. and Cox, M.A. and Saxey, D.W. and Rickard, W.D.A. et al. 2021. A new method for dating impact events – Thermal dependency on nanoscale Pb mobility in monazite shock twins. Geochimica et Cosmochimica Acta. 314: pp. 381-396.
    Source Title
    Geochimica et Cosmochimica Acta
    DOI
    10.1016/j.gca.2021.08.025
    ISSN
    0016-7037
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    John de Laeter Centre (JdLC)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DE190101307
    URI
    http://hdl.handle.net/20.500.11937/91631
    Collection
    • Curtin Research Publications
    Abstract

    To test the potential of deformation twins to record the age of impact events, micrometre-scale size mechanical twins in shocked monazite grains from three impact structures were analyzed by atom probe tomography (APT). Shocked monazite from Vredefort (South Africa; ∼300 km crater diameter), Araguainha (Brazil; ∼40 km diameter), and Woodleigh (Australia; 60 to 120 km diameter) were studied, all from rocks which experienced pressures of ∼30 GPa or higher, but each with a different post-impact thermal history. The Vredefort sample is a thermally recrystallised foliated felsic gneiss and the Araguainha sample is an impact melt-bearing bedrock. Both Vredefort and Araguainha samples record temperatures > 900 °C, whereas the Woodleigh sample is a paragneiss that experienced lower temperature conditions (350–500 °C). A combined 208Pb/232Th age for common {12¯2¯} twins and shock-specific (1¯01) twins in Vredefort monazite was defined at 1979 ± 150 Ma, consistent with the accepted impact age of ∼2020 Ma. Irrational η1 [1¯1¯0] shock-specific twins in Araguainha monazite yielded a 260 ± 48 Ma age, also consistent with the accepted 250–260 Ma impact age. However, the age of a common (001) twin in Araguainha monazite is 510 ± 87 Ma, the pre-impact age of igneous crystallisation. These results are explained by the occurrence of common (001) twins in tectonic deformation settings, in contrast to the (1¯01) and irrational η1 [1¯1¯0] twins, which have only been documented in shock-deformed rocks. In Woodleigh monazite, APT age data for all monazite twins [(001), (1¯01), newly identified 102°/<4¯23> twin], and host monazite are within uncertainty at 1048 ± 91 Ma, which is interpreted as a pre-impact age of regional metamorphism. We therefore are able to further constrain the poorly known age of the Woodleigh impact to <1048 ± 91 Ma. These results provide evidence that Pb is expelled from monazite during shock twin formation at high temperature (Vredefort and Araguainha), and also that Pb is not mobilised during twinning at lower temperature (Woodleigh). Our study suggests that twins formed during shock metamorphism have the potential to record the age of the impact event in target rocks that are sufficiently heated during the cratering process.

    Related items

    Showing items related by title, author, creator and subject.

    • Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages
      Erickson, T.; Timms, Nicholas Eric; Kirkland, Chris; Tohver, E.; Cavosie, Aaron; Pearce, M.; Reddy, Steven (2017)
      Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics ...
    • Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques
      Erickson, T.; Cavosie, Aaron; Moser, D.; Barker, I.; Radovan, H.; Wooden, J. (2013)
      The record of meteorite impacts on Earth is incomplete due to the destruction of impact craters by erosion and burial. Shocked minerals residing in sediments may help further document the impact record. To evaluate the ...
    • New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico
      Timms, Nick ; Pearce, M.A.; Erickson, Timmons ; Cavosie, Aaron ; Rae, A.S.P.; Wheeler, J.; Wittmann, A.; Ferrière, L.; Poelchau, M.H.; Tomioka, N.; Collins, G.S.; Gulick, S.P.S.; Rasmussen, C.; Morgan, J.V.; Chenot, E.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; Coolen, Marco ; Gebhardt, C.; Goto, K.; Green, S.; Jones, H.; Kring, D.A.; Lofi, J.; Lowery, C.M.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A.E.; Rasmussen, C.; Rebolledo-Vieyra, M.; Riller, U.; Sato, H.; Smit, J.; Tikoo, S.M.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M.T.; Xiao, L.; Yamaguchi, K.E. (2019)
      Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.