Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions

    91496.pdf (4.957Mb)
    Access Status
    Open access
    Authors
    Li, Zhan
    Chen, L.
    Fang, Q.
    Chen, Wensu
    Hao, Hong
    Zhu, R.
    Zheng, K.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, Z. and Chen, L. and Fang, Q. and Chen, W. and Hao, H. and Zhu, R. and Zheng, K. 2019. Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions. International Journal of Impact Engineering. 129: pp. 66-79.
    Source Title
    International Journal of Impact Engineering
    DOI
    10.1016/j.ijimpeng.2019.02.013
    ISSN
    0734-743X
    Faculty
    Faculty of Science and Engineering
    School
    Department of Civil Engineering
    School of Civil and Mechanical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/LP150100259
    URI
    http://hdl.handle.net/20.500.11937/91672
    Collection
    • Curtin Research Publications
    Abstract

    © 2019 Elsevier Ltd A total of nine full-scale field blast tests were conducted in a specially designed reinforced concrete (RC) chamber to investigate the performance of carbon fiber reinforced polymer (CFRP) strip strengthened clay brick masonry walls subjected to vented gas explosions. Three wall specimens, i.e. unstrengthened, strengthened with distributed layout and strengthened with concentrated layout were prepared for blast tests. The testing data including overpressure time histories of vented gas explosions, displacement time histories, damage modes of each wall specimen were recorded and analyzed. It was found that under vented gas explosions, the wall specimen strengthened with concentrated layout showed improved blast resistance and all three wall specimens experienced typical flexural damage. Detailed micro models for masonry walls were developed in LS-DYNA, incorporating material parameters obtained from material tests. The accuracy of numerical models in predicting the responses of masonry walls was validated with the testing data. Parametric studies were conducted to explore the performances of masonry walls with different heights and thicknesses under blast loads specified by design codes. It was found that with the increase of wall thickness or the decrease of wall height, the maximum displacement and damage level of masonry walls decreased significantly. The 115 mm-thick masonry walls needed be strengthened to prevent collapse under the specified blast loads. The strengthened walls experienced typical flexural response and the strengthening effectiveness of using CFRP, GFRP and spray-on polyurea were numerically compared.

    Related items

    Showing items related by title, author, creator and subject.

    • Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions
      Li, Zhan; Chen, L.; Fang, Q.; Chen, Wensu; Hao, Hong; Zhang, Y. (2017)
      © 2017 Elsevier Ltd Ten full-scale field tests were conducted to study the performance of basalt fiber reinforced polymer (BFRP) strip strengthened autoclaved aerated concrete (AAC) masonry walls subjected to vented gas ...
    • Study of autoclaved aerated concrete masonry walls under vented gas explosions
      Li, Z.; Chen, L.; Fang, Q.; Hao, Hong; Zhang, Y.; Chen, Wensu; Xiang, H.; Bao, Q. (2017)
      © 2017 Elsevier LtdA total of nine full-scale in-situ tests were carried out to investigate the performances of autoclaved aerated concrete (AAC) masonry walls subjected to vented gas explosions. The testing data including ...
    • Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions
      Li, Zhan; Chen, L.; Fang, Q.; Hao, Hong; Zhang, Y.; Xiang, H.; Chen, Wensu; Yang, S.; Bao, Q. (2017)
      A total of 16 full-scale in-situ tests were carried out to investigate the performances of unreinforced clay brick masonry walls subjected to vented gas explosions. The pressure-time histories of vented gas explosions, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.