Effect of aggregate size on the dynamic interfacial bond behaviour between basalt fiber reinforced polymer sheets and concrete
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
This experimental investigation examines the influence of coarse aggregate size (i.e. 5–10 mm, 10–15 mm, and 15–20 mm) on the dynamic interfacial bond behaviour between BFRP and concrete under various loading speeds (i.e. 8.33E−6, 0.1, 1.0, 3.0, 5.0, and 8.0 m/s). The testing results including the interfacial bond strength and bond-slip responses are evaluated and discussed. For the specimens with the same coarse aggregate size under different loading speeds, the ultimate debonding strain of the BFRP sheets subjected to dynamic loading is higher than that under static loading, and the debonding load and peak shear stress increase with the rising loading speed. For the specimens with different coarse aggregate sizes under the same loading speed, the peak interfacial shear stress slightly reduces with the rising coarse aggregate size. However, the variation of the interfacial shear stress is marginal when the loading speed is over 3 m/s due to the debonding surface shifted from concrete substrate to the concrete-epoxy interface. The proposed bond-slip model by incorporating the effects of coarse aggregate size and strain rate matches well with the testing results.
Related items
Showing items related by title, author, creator and subject.
-
Hao, Y.; Hao, Hong (2011)The dynamic strength of concrete materials is usually obtained by conducting laboratory tests such as drop-weight test or split Hopkinson pressure bar (SHPB) test. It is widely accepted that the uniaxial compressive ...
-
Chen, G.; Hao, Yifei; Hao, Hong (2015)Tensile strength is one of the key factors of concrete material that need be accurately defined in analysis of concrete structures subjected to high-speed impact loads. Dynamic tensile strength of concrete material is ...
-
Yuan, C.; Chen, Wensu ; Pham, Thong ; Hao, Hong ; Cui, J.; Shi, Y. (2020)An experimental investigation on the dynamic interfacial bond behaviours between hybrid carbon/basalt fibre reinforced polymer (FRP) sheets and concrete under high loading velocities (i.e., 8.33E-6, 1.0, 3.0, and 8.0 m/s) ...