Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
© 2019 Elsevier Ltd Sandwich panel with Honeycomb Filled with Circular Tubes (HFCT) as core is numerically investigated by using ABAQUS/Explicit in this study. To calibrate the numerical model, the panels equipped with conventional hexagon honeycomb cores are modeled. Good agreement between numerical and experimental results is achieved. The sandwich panels with HFCT are compared with the sandwich panels with Honeycomb and Multi-tube cores of identical mass subjected to vertical and oblique impacts. The maximum displacement of face-sheets, plastic energy absorption, boundary reaction forces and impact load time history are calculated to assess the impact resistant capacity. The panel with HFCT core has smaller rear face-sheet displacement and higher energy absorption capacity as compared to the panels with the Multi-tube and Honeycomb core. Under oblique impact, both HFCT and Multi-tube panels have superior impact resistant capacity than the Honeycomb panel. In addition, the impact resistances of four types of multi-arc tube filled Honeycomb (HFMT) are also analysed. Their performances under vertical and oblique impacts are compared with those of HFCT.
Related items
Showing items related by title, author, creator and subject.
-
Chen, Wensu; Hao, Hong (2013)Blast-resistant structures are traditionally designed with solid materials of huge weight to resist blast loads. This not only increases the construction costs, but also undermines the operational performance. To overcome ...
-
Li, Z.; Chen, Wensu; Hao, Hong (2018)© 2018 A new form of bi-directional Load-Self-Cancelling (LSC) sandwich panel is proposed in this paper. An array of square dome shaped steel sheet as core of the proposed sandwich panel is designed to cancel a certain ...
-
Cui, Yanqiang; Hao, Hong; Li, Jun ; Chen, Wensu ; Zhang, Xihong (2022)In this study, two new types of geopolymer composite lightweight sandwich panels are developed for prefabricated buildings. The first one has Fiber-reinforced Geopolymer (FRG) composite skin layers and polyurethane (PUR) ...