Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Apatite and monazite: An effective duo to unravel superimposed fluid-flow and deformation events in reactivated shear zones

    Access Status
    Fulltext not available
    Authors
    Prent, Alexander
    Beinlich, Andreas
    Raimondo, T.
    Kirkland, Chris
    Evans, Noreen
    Putnis, Andrew
    Date
    2020
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Prent, A.M. and Beinlich, A. and Raimondo, T. and Kirkland, C.L. and Evans, N.J. and Putnis, A. 2020. Apatite and monazite: An effective duo to unravel superimposed fluid-flow and deformation events in reactivated shear zones. Lithos. 376-377: ARTN 105752.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2020.105752
    ISSN
    0024-4937
    Faculty
    Faculty of Science and Engineering
    School
    John de Laeter Centre (JdLC)
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP160103449
    http://purl.org/au-research/grants/arc/LE150100013
    URI
    http://hdl.handle.net/20.500.11937/91737
    Collection
    • Curtin Research Publications
    Abstract

    Mylonitic shear zones crosscutting homogenous granitoids can retain evidence of fluid-driven metasomatic retrogression and reactivation. However, the relationships between fluid-rock interaction, retrogression, deformation and mylonitisation, and the timing thereof, are often cryptically recorded. This study focuses on the granulite-facies Boothby Orthogneiss from the Reynolds Range, central Australia, which contains a large scale mylonitic shear zone with an apparent record of structural inheritance, fluid infiltration and reactivation. The chosen site provides an ideal natural laboratory in which to investigate the timing of deformation, associated fluid flow and mass transport. U–Pb isotope analyses of monazite indicate an average Pb recrystallization age of c. 1560 Ma, demonstrating that the orthogneiss fabric developed during the Mesoproterozoic Chewings Orogeny (1590–1550 Ma). Structural mapping suggests that this shear zone represents a Riedel branch of larger structures that were subsequently reactivated during the Paleozoic Alice Springs Orogeny (450–300 Ma). The timing of reactivation and fluid flow is constrained by U–Pb dating of apatite, which is present as a stable U-bearing mineral in both orthogneiss and mylonite. Modelling of apatite radiogenic-Pb retention ages, accounting for a wide potential range in common Pb compositions, demonstrates at least some growth and/or recrystallization at c. 1500 Ma and c. 400 Ma, confirming apatite precipitation during Alice Springs shearing and the reactivation of Chewings-age structures. In addition, Alice Springs-aged apatite is found along pre-existing fabrics in the orthogneiss in the vicinity of the shear zone, indicating pre-kinematic fluid flow across the shear zone boundary and into country rock that was otherwise largely unaffected. The combined datasets demonstrates that integrated apatite and monazite U–Pb geochronology is an effective method to unravel the record of superimposed fluid-flow and deformation events. This includes the detection of an ‘inverse younging relationship’, where younger ages are preferentially recorded in the wall rock as rather than in the reactivated shear zone. Such effects are potentially common where deformation is driven by pre-kinematic fluid-rock interaction, with subsequent deformation enhancing the removal of replacement assemblages in more deformed rocks and favouring their preservation in less deformed rocks.

    Related items

    Showing items related by title, author, creator and subject.

    • Structural geology and gold mineralisation of the Ora Banda and Zuleika districts, Eastern Goldfields, Western Australia.
      Tripp, Gerard I. (2000)
      Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
    • Fluid migration and hydrocarbon charge history of the vulcan sub-basin
      Lisk, Mark (2012)
      A comprehensive examination of the hydrocarbon charge and formation water history of the central Vulcan Sub-basin, Timor Sea has been completed and a model developed to describe the evolution of the region’s petroleum ...
    • Microchemical and Microstructural Analysis of Major and Accessory Minerals During Fluid-Rock Interactions and Deformation
      Prent, Alexander Martijn (2019)
      In order to improve our understanding of the relation between fluid-rock interactions and deformation, deep crustal rocks that show evidence of hydration reactions have been analyzed, using microchemical and microstructural ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.