The Heavy Mineral Map of Australia: Vision and Pilot Project
Citation
Source Title
Additional URLs
Faculty
School
Collection
Abstract
We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. Heavy mineral presence/absence, absolute and relative abundance, and co-occurrence are metrics useful to map, discover and interpret catchment lithotype(s), geodynamic setting, magmatism, metamorphic grade, alteration and/or mineralization. Underpinning this vision is a pilot project, focusing on a subset from the national sediment sample archive, which is used to demonstrate the feasibility of the larger, national-scale project. We preview a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool will contribute significantly to mineral prospectivity analysis and modeling, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, lower carbon energy model.
Related items
Showing items related by title, author, creator and subject.
-
Liang, Wenbin; Chikritzhs, Tanya (2015)Background: Two ecological cross-sectional studies which relied on national survey data (U.S. and Australia) have shown that starting drinking at a younger age increases the frequency of heavy drinking in the general ...
-
Gartmair, Gisela Sandra (2022)Southern Australia's Eucla Basin is a world famous heavy mineral sands province. Little is understood about the basin's primary sediment provenance because of non-uniqueness in U-Pb age and Hf isotope signatures of likely ...
-
Khaleque, H.; Corbett, M.; Ramsay, Joshua; Kaksonen, A.; Boxall, N.; Watkin, E. (2017)© 2017 Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains ...