In situ SAXS studies of the pore development in biochar during gasification
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
This work investigates the pore development in biochar during gasification using synchrotron small angle X-ray scattering (SAXS) as an in situ characterization technique. The influence of the gasifying agents (H2O, CO2 or H2O/CO2) and temperature on the pore structure development in biochar was studied by carrying out the hour-long gasification of mallee wood biochar (106–250 μm) in: (i) H2O at 700, 800 and 900 °C respectively, (ii) CO2 at 700 and 800 °C, and (iii) a mixture of H2O and CO2 (H2O/CO2) at 800 °C. There was a minor increase in the micro- and mesopore volumes in biochar during gasification in H2O at 700 °C, in contrast to CO2 gasification at the same temperature where no measurable changes to the pore structure were observed. At 800 °C, biochar derived from H2O/CO2 gasification exhibited the highest specific surface area (SSA). CO2 tended to produce a highly microporous biochar with a mesopore network showing pore fractal features. Micropore enlargement was a major process in the presence of H2O. In this case, the pore structure evolved from being a porous network of branched micropore clusters (pore fractal) to being dominated by rough surfaced mesopores (surface fractal) during gasification in H2O and H2O/CO2. The evolution of pore structures result from the different ways in which carbon atoms were removed by either H2O or CO2. H2O is more reactive and less selective towards reacting with biochar, resulting in a less worm-like network of pores than CO2. Moreover, it was found that increasing temperatures can lead to faster rates of pore generation and pore enlargement, which is attributed to the increased reaction rate and the less selective removal of carbon atoms.
Related items
Showing items related by title, author, creator and subject.
-
Liu, Y.; Paskevicius, Mark ; Sofianos, M.V.; Parkinson, G.; Wang, Shuai ; Li, Chun-Zhu (2021)Gasification of biomass allows for its efficient utilisation as a renewable fuel through syngas production. This work presents the different effects of gasifying agents (H2O, CO2 and H2O/CO2) on the pore structure evolution ...
-
Liaw, Sui Boon; Wu, Hongwei (2015)This study reports a systematic study on the potential of employing partial gasification at low conversions for tuning biochar for better properties and facilitating the recycling of inorganic nutrient species. The raw ...
-
Abdullah, Hanisom binti (2010)Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...