Show simple item record

dc.contributor.authorXu, Xiaomin
dc.contributor.authorWang, Wei
dc.contributor.authorZhou, W.
dc.contributor.authorShao, Zongping
dc.date.accessioned2023-05-09T02:11:03Z
dc.date.available2023-05-09T02:11:03Z
dc.date.issued2018
dc.identifier.citationXu, X. and Wang, W. and Zhou, W. and Shao, Z. 2018. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods. 2 (7): ARTN 1800071.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91956
dc.identifier.doi10.1002/smtd.201800071
dc.description.abstract

Perovskite oxides hold great promise as efficient electrocatalysts for various energy-related applications owing to their low cost, flexible structure, and high intrinsic catalytic activity. However, conventional synthetic methods can only obtain perovskite catalysts with large particle sizes, small surface areas, and few morphological features, leading to limited catalytic activity and thus posing a major challenge toward real-world applications. Reducing the size of bulk perovskites down to the nanosize represents an efficient way to improve the electrocatalytic performance. A comprehensive overview of recent progress in the nanostructuring of perovskites for catalyzing several key reactions in metal–air batteries, water splitting, and solid oxide fuel cells is provided. A range of synthetic protocols for making perovskite nanostructures are summarized, followed by an emphasis on how each method can be tailored to obtain high-performing perovskite nanocatalysts. These recent advances highlight the enormous potential of nanosized perovskites for facilitating the electrocatalytic reactions. The remaining challenges and future directions are pointed out for the development of next-generation perovskite-based nanostructured catalysts.

dc.languageEnglish
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.urihttps://onlinelibrary.wiley.com/doi/am-pdf/10.1002/smtd.201800071
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150104365
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104835
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectelectrocatalysis
dc.subjectmetal-air batteries
dc.subjectnanostructures
dc.subjectperovskites
dc.subjectwater splitting
dc.subjectOXIDE FUEL-CELLS
dc.subjectOXYGEN EVOLUTION REACTION
dc.subjectHIGHLY EFFICIENT ELECTROCATALYST
dc.subjectBI-FUNCTIONAL CATALYST
dc.subjectSUPERIOR BIFUNCTIONAL ELECTROCATALYSTS
dc.subjectREDUCTION REACTION ACTIVITY
dc.subjectNONPRECIOUS METAL CATALYST
dc.subjectSULFUR-TOLERANT ANODE
dc.subjectHIGH-SURFACE-AREA
dc.subjectIN-SITU GROWTH
dc.titleRecent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications
dc.typeJournal Article
dcterms.source.volume2
dcterms.source.number7
dcterms.source.issn2366-9608
dcterms.source.titleSmall Methods
dc.date.updated2023-05-09T02:11:01Z
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.accessStatusOpen access via publisher
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidShao, Zongping [0000-0002-4538-4218]
curtin.contributor.orcidXu, Xiaomin [0000-0002-0067-3331]
curtin.contributor.researcheridShao, Zongping [B-5250-2013]
curtin.contributor.researcheridXu, Xiaomin [E-5439-2014]
curtin.identifier.article-numberARTN 1800071
dcterms.source.eissn2366-9608
curtin.contributor.scopusauthoridShao, Zongping [55904502000] [57200900274]
curtin.contributor.scopusauthoridXu, Xiaomin [57060970200]
curtin.contributor.scopusauthoridWang, Wei [57034524500]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record