Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%

    Access Status
    Fulltext not available
    Authors
    Liu, P.
    Chen, Y.
    Xiang, H.
    Yang, X.
    Wang, Wei
    Ran, R.
    Zhou, W.
    Shao, Zongping
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, P. and Chen, Y. and Xiang, H. and Yang, X. and Wang, W. and Ran, R. and Zhou, W. et al. 2021. Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%. Small. 17 (46): ARTN 2102186.
    Source Title
    Small
    DOI
    10.1002/smll.202102186
    ISSN
    1613-6810
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP200103332
    http://purl.org/au-research/grants/arc/DP200103315
    URI
    http://hdl.handle.net/20.500.11937/91968
    Collection
    • Curtin Research Publications
    Abstract

    Both the film quality and the electronic properties of halide perovskites have significant influences on the photovoltaic performance of perovskite solar cells (PSCs) because both of them are closely related to the charge carrier transportation, separation, and recombination processes in PSCs. In this work, an additive engineering strategy using antimony acetate (Sb(Ac)3) is employed to enhance the photovoltaic performance of methylammonium lead iodide (MAPbI3)-based PSCs by improving the film quality and optimizing the photoelectronic properties of halide perovskites. It is found that Ac− and Sb3+ of Sb(Ac)3 play different roles and their synergistic effect contributed to the eventual excellent photovoltaic performance of MAPbI3-based PSCs with a power conversion efficiency of above 21%. The Ac− anions act as a crystal growth controller and are more involved in the improvement of perovskite film morphology. By comparison, Sb3+ cations are more involved in the optimization of the electronic structure of perovskites to tailor the energy levels of the perovskite film. Furthermore, with the assistance of Sb(Ac)3, MAPbI3-based PSCs deliver much improved moisture, air, and thermal stability. This work can provide scientific insights on the additive engineering for improving the efficiency and long-term stability of MAPbI3-based PSCs, facilitating the further development of perovskite-based optoelectronics.

    Related items

    Showing items related by title, author, creator and subject.

    • High-Quality Ruddlesden–Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells
      Liu, P.; Han, N.; Wang, Wei ; Ran, R.; Zhou, W.; Shao, Zongping (2021)
      In the last decade, perovskite solar cells (PSCs) have undergone unprecedented rapid development and become a promising candidate for a new-generation solar cell. Among various PSCs, typical 3D halide perovskite-based ...
    • A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells
      Liu, P.; Xiang, H.; Wang, Wei ; Ran, R.; Zhou, W.; Shao, Zongping (2021)
      The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite films ...
    • Promoting the Efficiency and Stability of CsPbIBr2-Based All-Inorganic Perovskite Solar Cells through a Functional Cu2+Doping Strategy
      Liu, P.; Yang, X.; Chen, Y.; Xiang, H.; Wang, Wei ; Ran, R.; Zhou, W.; Shao, Zongping (2020)
      Although organic-inorganic halide perovskite solar cells (PSCs) have shown dramatically enhanced power conversion efficiencies (PCEs) in the last decade, their long-term stability is still a critical challenge for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.