Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area. This journal is
Related items
Showing items related by title, author, creator and subject.
-
Xiong, B.; Zhou, Y.; O'Hayre, R.; Shao, Zongping (2013)In this work, we present a facile route to prepare electrocatalysts for methanol oxidation. The catalystsynthesis route involves the simultaneous reduction and nitrogen doping of graphene oxide (GO) along with the reduction ...
-
Su, P.; Huang, W.; Zhang, J.; Guharoy, U.; Du, Q.; Sun, Q.; Jiang, Q.; Cheng, Yi ; Yang, J.; Zhang, X.; Liu, Y.; Jiang, San Ping; Liu, Jian (2021)Defective electrocatalysts, especially for intrinsic defective carbon, have aroused a wide concern owing to high spin and charge densities. However, the designated nitrogen species favorable for creating defects by the ...
-
Cheng, Yi ; Wang, M.; Lu, S.; Tang, C.; Wu, X.; Veder, Jean-Pierre ; Johannessen, B.; Thomsen, L.; Zhang, J.; Yang, S.Z.; Wang, S.; Jiang, San Ping (2021)Phosphate poisoning of Pt electrocatalysts is one of the major barriers that constrains the performance of phosphoric acid-doped polybenzimidazole (PA/PBI) membrane fuel cells. Herein, we developed new atomically dispersed ...