Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni–Mo/TiO2 and Ni/Al2O3: Oil composition and mechanism
dc.contributor.author | Terry, L.M. | |
dc.contributor.author | Wee, Melvin Xin Jie | |
dc.contributor.author | Chew, J.J. | |
dc.contributor.author | Khaerudini, D.S. | |
dc.contributor.author | Darsono, N. | |
dc.contributor.author | Aqsha, A. | |
dc.contributor.author | Saptoro, Agus | |
dc.contributor.author | Sunarso, J. | |
dc.date.accessioned | 2023-05-26T16:36:35Z | |
dc.date.available | 2023-05-26T16:36:35Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Terry, L.M. and Wee, M.X.J. and Chew, J.J. and Khaerudini, D.S. and Darsono, N. and Aqsha, A. and Saptoro, A. et al. 2023. Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni–Mo/TiO2 and Ni/Al2O3: Oil composition and mechanism. Environmental Research. 224: 115550. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/92241 | |
dc.identifier.doi | 10.1016/j.envres.2023.115550 | |
dc.description.abstract |
Pyrolysis oil from oil palm biomass can be a sustainable alternative to fossil fuels and the precursor for synthesizing petrochemical products due to its carbon-neutral properties and low sulfur and nitrogen content. This work investigated the effect of applying mesoporous acidic catalysts, Ni–Mo/TiO2 and Ni/Al2O3, in a catalytic co-pyrolysis of oil palm trunk (OPT) and polypropylene (PP) from 500 to 700 °C. The obtained oil yields varied between 12.67 and 19.50 wt.% and 12.33–17.17 wt.% for Ni–Mo/TiO2 and Ni/Al2O3, respectively. The hydrocarbon content in oil significantly increased up to 54.07–58.18% and 37.28–68.77% after adding Ni–Mo/TiO2 and Ni/Al2O3, respectively. The phenolic compounds content was substantially reduced to 8.46–20.16% for Ni–Mo/TiO2 and 2.93–14.56% for Ni/Al2O3. Minor reduction in oxygenated compounds was noticed from catalytic co-pyrolysis, though the parametric effects of temperature and catalyst type remain unclear. The enhanced deoxygenation and cracking of phenolic and oxygenated compounds and the PP decomposition resulted in increased hydrocarbon production in oil during catalytic co-pyrolysis. Catalyst addition also promoted the isomerization and oligomerization reactions, enhancing the formation of cyclic relative to aliphatic hydrocarbon. | |
dc.language | eng | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Catalyst | |
dc.subject | Nickel-based | |
dc.subject | Nickel-molybdenum based | |
dc.subject | Oil palm biomass | |
dc.subject | Pyrolysis oil | |
dc.subject | Polypropylenes | |
dc.subject | Pyrolysis | |
dc.subject | Titanium | |
dc.subject | Hydrocarbons | |
dc.subject | Catalysis | |
dc.subject | Biomass | |
dc.subject | Biofuels | |
dc.subject | Hot Temperature | |
dc.subject | Titanium | |
dc.subject | Hydrocarbons | |
dc.subject | Polypropylenes | |
dc.subject | Biomass | |
dc.subject | Catalysis | |
dc.subject | Hot Temperature | |
dc.subject | Biofuels | |
dc.subject | Pyrolysis | |
dc.title | Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni–Mo/TiO2 and Ni/Al2O3: Oil composition and mechanism | |
dc.type | Journal Article | |
dcterms.source.volume | 224 | |
dcterms.source.issn | 0013-9351 | |
dcterms.source.title | Environmental Research | |
dc.date.updated | 2023-05-26T16:36:22Z | |
curtin.department | Global Curtin | |
curtin.accessStatus | Open access | |
curtin.faculty | Global Curtin | |
curtin.contributor.orcid | Saptoro, Agus [0000-0002-1734-4788] | |
curtin.identifier.article-number | 115550 | |
dcterms.source.eissn | 1096-0953 | |
curtin.contributor.scopusauthorid | Saptoro, Agus [24597790900] | |
curtin.repositoryagreement | V3 |