Co-influence of nanofiller content and 3D printing parameters on mechanical properties of thermoplastic Polyurethane (TPU)/halloysite nanotube (HNT) nanocomposites
Citation
Source Title
Additional URLs
ISSN
Faculty
School
Collection
Abstract
Thermoplastic polyurethane (TPU) belongs to a polyurethane family that possesses an elongation much higher than 300%, despite having low mechanical strength, which can be overcome by incorporating clay-based halloysite nanotubes (HNTs) as additives to manufacture TPU/HNT nanocomposites. This paper focuses on the co-influence of HNT content and 3D printing parameters on the mechanical properties of 3D printed TPU/HNT nanocomposites in terms of tensile properties, hardness, and abrasion resistance via fused deposition modelling (FDM). The optimum factor-level combination for different responses was determined with the aid of robust statistical Taguchi design of experiments (DoEs). Material characterisation was also carried out to evaluate the surface morphology, nanofiller dispersion, chemical structure, thermal stability, and phase behaviour corresponding to the DoE results obtained. It is evidently shown that HNT level and infill density play a significant role in impacting mechanical properties of 3D-printed TPU/HNT nanocomposites.
Related items
Showing items related by title, author, creator and subject.
-
Nugroho, Wendy Triadji (2023)My project investigated the influence of halloysite nanotubes (HNTs) and processing parameters on dimensional accuracy and surface quality, mechanical properties, thermal properties, chemical properties and shape memory ...
-
Han, Sensen; Li, Shuangshan; Liu, Dongyan; Dong, Roger ; Gao, Ziqi; Zhang, Yanxi; Meng, Qingshi (2024)The development of polyurethane composites with significant flame retardancy and corrosion resistance for widening its practical application is a great importance. In this study, supramolecular wrapped α‐ZrP (MCP@ZrP) was ...
-
Nugroho, Wendy Triadji; Dong, Yu ; Pramanik, Alokesh (2024)This paper investigates the impact of halloysite nanotube (HNT) content on mechanical and shape memory properties of additively manufactured polyurethane (PU)/HNT nanocomposites. The inclusion of 8 wt% HNTs increases their ...