Microwaves reduce water refractive index
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Microwaves, long used as a convenient household appliance, have been increasingly used in industrial processes such as organic synthesis and oil processing. It has been proposed that microwaves can enhance these chemical processes via a non-thermal effect. Here we report the instantaneous effect of microwaves on the permittivity and phase velocity of light in water through the in-situ measurement of changes in refractive index. Microwave irradiation was found to reduce the water refractive index (RI) sharply. The reduction increased as a function of microwave power to a far greater extent than expected from the change in temperature. The phase velocity of light in water increases up to ~ 5% (RI of 1.27) during microwave irradiation. Upon stopping irradiation, the return to the equilibrium RI was delayed by up to 30 min. Our measurement shows that microwaves have a profound non-thermal and long-lasting effect on the properties of water. Further investigation is planned to verify if the observed RI reduction is restricted to the region near the surface or deep inside water bulk. The observation suggests a relationship between microwave-induced and the enhanced aqueous reactions.
Related items
Showing items related by title, author, creator and subject.
-
Wang, H.; Rezaee, M. Reza; Saeedi, A. (2015)During well drilling, completion, stimulation and fracturing, moisture invasion and phase trapping lead to a drastic permeability reduction, which prevent the tight gas reservoir producing at an economical rate. To eliminate ...
-
Wang, H.; Rezaee, M. Reza; Saeedi, A. (2016)The formation damages, such as water blocking and clay swelling, in tight gas reservoir have been recognized as severe problems impairing gas production. To remedy these damages, formation heat treatment (FHT) was taken ...
-
Asada, M.; Kanazawa, Y.; Asakuma, Y.; Honda, I.; Phan, Chi (2015)© 2015 The Institution of Chemical Engineers. Surface tension of fluids is an important factor controlling multiphase systems and is often manipulated by surfactants during industrial processes. Previously, we have found ...