Show simple item record

dc.contributor.authorLin, Qun
dc.contributor.authorLoxton, Ryan
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T11:11:54Z
dc.date.available2017-01-30T11:11:54Z
dc.date.created2013-12-11T04:18:01Z
dc.date.issued2014
dc.identifier.citationLin, Qun and Loxton, Ryan and Teo, Kok Lay. 2014. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and management optimization. 10 (1): pp. 275-309.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/9322
dc.identifier.doi10.3934/jimo.2014.10.275
dc.description.abstract

The control parameterization method is a popular numerical technique for solving optimal control problems. The main idea of control parameterization is to discretize the control space by approximating the control function by a linear combination of basis functions. Under this approximation scheme, the optimal control problem is reduced to an approximate nonlinear optimization problem with a finite number of decision variables. This approximate problem can then be solved using nonlinear programming techniques. The aim of this paper is to introduce the fundamentals of the control parameterization method and survey its various applications to non-standard optimal control problems. Topics discussed include gradient computation, numerical convergence, variable switching times, and methods for handling state constraints. We conclude the paper with some suggestions for future research.

dc.publisherAmerican Institute of Mathematical Sciences
dc.subjectswitching times
dc.subjecttime-scaling transformation
dc.subjectstate constraints
dc.subjectcontrol parameterization
dc.subjectOptimal control
dc.titleThe control parameterization method for nonlinear optimal control: A survey
dc.typeJournal Article
dcterms.source.volume10
dcterms.source.number1
dcterms.source.startPage275
dcterms.source.endPage309
dcterms.source.issn1547-5816
dcterms.source.titleJournal of Industrial and management optimization
curtin.note

Copyright © 2013 American Institute of Mathematical Sciences

curtin.department
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record