Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The popularity of tracking devices continues to contribute to increasing volumes of spatio-temporal data about moving objects. Current approaches in analysing these data are unable to capture collective behaviour and correlations among moving objects. An example of these types of patterns is moving flocks. This article develops an improved algorithm for mining such patterns following a frequent pattern discovery approach, a well-known task in traditional data mining. It uses transaction-based data representation of trajectories to generate a database that facilitates the application of scalable and efficient frequent pattern mining algorithms. Results were compared with an existing method (Basic Flock Evaluation or BFE) and are demonstrated for both synthetic and real data sets with a large number of trajectories. The results illustrate a significant performance increase. Furthermore, the improved algorithm has been embedded into a visual environment that allows manipulation of input parameters and interactive recomputation of the resulting flocks. To illustrate the visual environment a data set containing 30 years of tropical cyclone tracks with 6 hourly observations is used. The example illustrates how the visual environment facilitates exploration and verification of flocks by changing the input parameters and instantly showing the spatio-temporal distribution of the resulting flocks in the Space-Time Cube and interactively selecting,
Related items
Showing items related by title, author, creator and subject.
-
Nimmagadda, Sashi; Dreher, Heinz; Noventiyanto, A.; Mostafa, A.; Fiume, G. (2012)This paper introduces the problem of mining frequent integrated-geophysical data patterns and spatial association rules that are prevalent in spatio-temporal data. Due to the heterogeneous nature, large volume in size and ...
-
Xia, Jianhong (Cecilia); Arrowsmith, C. (2005)People perceive, think, and behave differently at various spatial and temporal scales. Spatiotemporal modelling of tourist movements considers how people move about or why they exhibit certain movement behaviours. Research ...
-
Naish, S.; Dale, P.; Mackenzie, John; McBride, J.; Mengersen, K.; Tong, S. (2014)Background: Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical ...