Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    PPP time and frequency transfer independent of time-varying receiver biases

    Access Status
    Fulltext not available
    Authors
    El-Mowafy, Ahmed
    Date
    2023
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    El-Mowafy, A. 2023. PPP time and frequency transfer independent of time-varying receiver biases. In: International Technical Meeting of the Institute of Navigation and the Precise Time and Time Interval Meeting (ITM-PTTI2023), 23rd Jan 2023, Long Beach, California.
    Source Conference
    International Technical Meeting of the Institute of Navigation and the Precise Time and Time Interval Meeting (ITM-PTTI2023)
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/93515
    Collection
    • Curtin Research Publications
    Abstract

    Precise point positioning (PPP) has become a competitive time and frequency transfer technique using global navigation satellite system (GNSS) measurements. The core objective of PPP time and frequency transfer is to obtain high-precision solutions for the receiver clock parameter. However, due to the linear correlation between the receiver clock, code biases and phase biases in the PPP model, those three types of parameters cannot be estimated separately. When constructing the full-rank PPP model, the receiver clock parameter absorbs the ionosphere-free (IF) receiver code bias and thus loses its original form. In traditional PPP time and frequency transfer, it is usually assumed that the receiver code biases are time-invariant, which is not always true. Studies have shown that receiver code biases may have significant time variability, which inevitably affects the time and frequency transfer performance. Therefore, in this contribution, the receiver code biases are considered time-variant parameters in the filtering process. They are made estimable by choosing the first-epoch receiver code biases as the datum. The IF PPP and uncombined (UC) PPP considering time-varying receiver biases will be considered. In this sense, only the IF receiver code bias of the first epoch will be included in the estimable receiver clock so that the time and frequency transfer will no longer be affected by time-varying receiver biases. The time-varying behaviors of the receiver code biases will first be shown, which will show that the time-invariant assumption of the IF receiver bias is not always reasonable. Next, the time and frequency transfer performance of PPP considering the time-varying receiver biases will be compared with traditional PPP approach. Improvements in time transfer and long-term frequency stability of PPP considering time-varying receiver code will be demonstrated.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of ambiguity success rates based on multi-frequency GPS and Galileo
      Arora, Balwinder Singh (2012)
      The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
    • Triple Frequency precise point positioning with multi-constellation GNSS
      Deo, Manoj; El-Mowafy, Ahmed (2017)
      The availability of signals on three or more frequencies from multiple GNSS constellations provides opportunities for improving precise point positioning (PPP) convergence time and accuracy, compared to when using ...
    • Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers
      Zhang, B.; Teunissen, Peter; Yuan, Y.; Zhang, H.; Li, M. (2017)
      Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.