Show simple item record

dc.contributor.authorDriscoll, A.
dc.contributor.authorRomaniuk, H.
dc.contributor.authorDinh, D.
dc.contributor.authorAmerena, J.
dc.contributor.authorBrennan, A.
dc.contributor.authorHare, D.L.
dc.contributor.authorKaye, D.
dc.contributor.authorLefkovits, J.
dc.contributor.authorLockwood, S.
dc.contributor.authorNeil, C.
dc.contributor.authorPrior, D.
dc.contributor.authorReid, Christopher
dc.contributor.authorOrellana, L.
dc.date.accessioned2023-11-14T07:21:33Z
dc.date.available2023-11-14T07:21:33Z
dc.date.issued2022
dc.identifier.citationDriscoll, A. and Romaniuk, H. and Dinh, D. and Amerena, J. and Brennan, A. and Hare, D.L. and Kaye, D. et al. 2022. Clinical risk prediction model for 30-day all-cause re-hospitalisation or mortality in patients hospitalised with heart failure. International Journal of Cardiology. 350: pp. 69-76.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/93775
dc.identifier.doi10.1016/j.ijcard.2021.12.051
dc.description.abstract

Background: This study aimed to develop a risk prediction model (AUS-HF model) for 30-day all-cause re-hospitalisation or death among patients admitted with acute heart failure (HF) to inform follow-up after hospitalisation. The model uses routinely collected measures at point of care. Methods: We analyzed pooled individual-level data from two cohort studies on acute HF patients followed for 30-days after discharge in 17 hospitals in Victoria, Australia (2014–2017). A set of 58 candidate predictors, commonly recorded in electronic medical records (EMR) including demographic, medical and social measures were considered. We used backward stepwise selection and LASSO for model development, bootstrap for internal validation, C-statistic for discrimination, and calibration slopes and plots for model calibration. Results: The analysis included 1380 patients, 42.1% female, median age 78.7 years (interquartile range = 16.2), 60.0% experienced previous hospitalisation for HF and 333 (24.1%) were re-hospitalised or died within 30 days post-discharge. The final risk model included 10 variables (admission: eGFR, and prescription of anticoagulants and thiazide diuretics; discharge: length of stay>3 days, systolic BP, heart rate, sodium level (<135 mmol/L), >10 prescribed medications, prescription of angiotensin converting enzyme inhibitors or angiotensin receptor blockers, and anticoagulants prescription. The discrimination of the model was moderate (C-statistic = 0.684, 95%CI 0.653, 0.716; optimism estimate = 0.062) with good calibration. Conclusions: The AUS-HF model incorporating routinely collected point-of-care data from EMRs enables real-time risk estimation and can be easily implemented by clinicians. It can predict with moderate accuracy risk of 30-day hospitalisation or mortality and inform decisions around the intensity of follow-up after hospital discharge.

dc.languageEnglish
dc.publisherELSEVIER IRELAND LTD
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/nhmrc/1136372
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectCardiac & Cardiovascular Systems
dc.subjectCardiovascular System & Cardiology
dc.subjectHeart failure
dc.subjectRisk prediction model
dc.subjectRe-hospitalisation
dc.subjectMortality
dc.subjectREADMISSION
dc.subjectVALIDATION
dc.subjectGUIDELINES
dc.subjectDERIVATION
dc.subjectDIAGNOSIS
dc.subjectSCORE
dc.subjectRULE
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectCardiac & Cardiovascular Systems
dc.subjectCardiovascular System & Cardiology
dc.subjectHeart failure
dc.subjectRisk prediction model
dc.subjectRe-hospitalisation
dc.subjectMortality
dc.subjectREADMISSION
dc.subjectVALIDATION
dc.subjectDERIVATION
dc.subjectSCORE
dc.subjectRULE
dc.subjectHeart failure
dc.subjectMortality
dc.subjectRe-hospitalisation
dc.subjectRisk prediction model
dc.subjectAftercare
dc.subjectAged
dc.subjectAngiotensin-Converting Enzyme Inhibitors
dc.subjectFemale
dc.subjectHeart Failure
dc.subjectHospitalization
dc.subjectHumans
dc.subjectMale
dc.subjectPatient Discharge
dc.subjectHumans
dc.subjectAngiotensin-Converting Enzyme Inhibitors
dc.subjectAftercare
dc.subjectHospitalization
dc.subjectPatient Discharge
dc.subjectAged
dc.subjectFemale
dc.subjectMale
dc.subjectHeart Failure
dc.titleClinical risk prediction model for 30-day all-cause re-hospitalisation or mortality in patients hospitalised with heart failure
dc.typeJournal Article
dcterms.source.volume350
dcterms.source.startPage69
dcterms.source.endPage76
dcterms.source.issn0167-5273
dcterms.source.titleInternational Journal of Cardiology
dc.date.updated2023-11-14T07:21:32Z
curtin.departmentCurtin School of Population Health
curtin.accessStatusFulltext not available
curtin.facultyFaculty of Health Sciences
curtin.contributor.orcidReid, Christopher [0000-0001-9173-3944]
dcterms.source.eissn1874-1754
curtin.repositoryagreementV3


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record