Show simple item record

dc.contributor.authorSadaghiani, M.S.
dc.contributor.authorSiahvashi, A.
dc.contributor.authorArami-Niya, Arash
dc.contributor.authorTsuji, T.
dc.contributor.authorYukumoto, A.
dc.contributor.authorSeiki, Y.
dc.contributor.authorAl Ghafri, S.Z.S.
dc.contributor.authorStanwix, P.L.
dc.contributor.authorMay, E.F.
dc.date.accessioned2024-02-13T04:48:13Z
dc.date.available2024-02-13T04:48:13Z
dc.date.issued2023
dc.identifier.citationSadaghiani, M.S. and Siahvashi, A. and Arami-Niya, A. and Tsuji, T. and Yukumoto, A. and Seiki, Y. and Al Ghafri, S.Z.S. et al. 2023. Cryogenic Solid Solubility Measurements for HFC-32 + CO2 Binary Mixtures at Temperatures Between (132 and 217) K. International Journal of Thermophysics. 44 (9): 135.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/94344
dc.identifier.doi10.1007/s10765-023-03243-w
dc.description.abstract

Accurate phase equilibrium data for mixtures of eco-friendly but mildly-flammable refrigerants with inert components like CO2 will help the refrigeration industry safely employ working fluids with 80 % less global warming potential than those of many widely-used refrigerants. In this work, a visual high-pressure measurement setup was used to measure solid–fluid equilibrium (SFE) of HFC-32 + CO2 binary systems at temperatures between (132 and 217) K. The experimental data show a eutectic composition of around 11 mol % CO2 with a eutectic temperature of 131.9 K at solid–liquid–vapour (SLVE) condition. Measured SLVE and solid–liquid equilibrium data were used to tune a thermodynamic model implemented in the ThermoFAST software package by adjusting the binary interaction parameter (BIP) in the Peng–Robinson equation of state. The tuned model represents the measured melting points for binary mixtures with a root mean square deviation (RMSD) of 3.2 K, which is 60 % less than achieved with the default BIP. An RMSD of 0.5 K was obtained using the tuned model for the mixtures with CO2 fractions over 28 mol % relative to an RMSD of 3.4 K obtained with the default model. The new property data and improved model presented in this work will help avoid solid deposition risk in cryogenic applications of the HFC-32 + CO2 binary system and promote wider applications of more environmentally-friendly refrigerant mixtures.

dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleCryogenic Solid Solubility Measurements for HFC-32 + CO2 Binary Mixtures at Temperatures Between (132 and 217) K
dc.typeJournal Article
dcterms.source.volume44
dcterms.source.number9
dcterms.source.issn0195-928X
dcterms.source.titleInternational Journal of Thermophysics
dc.date.updated2024-02-13T04:48:06Z
curtin.departmentWASM: Minerals, Energy and Chemical Engineering
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidArami-Niya, Arash [0000-0001-6450-0774]
curtin.contributor.researcheridArami-Niya, Arash [U-4895-2017]
curtin.identifier.article-number135
dcterms.source.eissn1572-9567
curtin.contributor.scopusauthoridArami-Niya, Arash [36468096400]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/