Show simple item record

dc.contributor.authorFairweather, John
dc.contributor.authorLagain, Anthony
dc.contributor.authorServis, K.
dc.contributor.authorBenedix, Gretchen
dc.contributor.authorKumar, S.S.
dc.contributor.authorBland, Phil
dc.date.accessioned2024-02-17T07:23:10Z
dc.date.available2024-02-17T07:23:10Z
dc.date.issued2022
dc.identifier.citationFairweather, J.H. and Lagain, A. and Servis, K. and Benedix, G.K. and Kumar, S.S. and Bland, P.A. 2022. Automatic Mapping of Small Lunar Impact Craters Using LRO-NAC Images. Earth and Space Science. 9 (7): ARTN e2021EA002177.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/94370
dc.identifier.doi10.1029/2021EA002177
dc.description.abstract

Impact craters are the most common feature on the Moon’s surface. Crater size–frequency distributions provide critical insight into the timing of geological events, surface erosion rates, and impact fluxes. The impact crater size–frequency follows a power law (meter-sized craters are a few orders of magnitude more numerous than kilometric ones), making it tedious to manually measure all the craters within an area to the smallest sizes. We can bridge this gap by using a machine learning algorithm. We adapted a Crater Detection Algorithm to work on the highest resolution lunar image data set (Lunar Reconnaissance Orbiter-Narrow-Angle Camera [NAC] images). We describe the retraining and application of the detection model to preprocessed NAC images and discussed the accuracy of the resulting crater detections. We evaluated the model by assessing the results across six NAC images, each covering a different lunar area at differing lighting conditions. We present the model’s average true positive rate for small impact craters (down to 20 m in diameter) is 93%. The model does display a 15% overestimation in calculated crater diameters. The presented crater detection model shows acceptable performance on NAC images with incidence angles ranging between ∼50° and ∼70° and can be applied to many lunar sites independent to morphology.

dc.languageEnglish
dc.publisherAMER GEOPHYSICAL UNION
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP210100336
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT170100024
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectAstronomy & Astrophysics
dc.subjectGeosciences, Multidisciplinary
dc.subjectGeology
dc.subjectimpact craters
dc.subjectMoon
dc.subjectCrater Detection Algorithm
dc.subjectSIZE-FREQUENCY DISTRIBUTION
dc.subjectFRONT FACE BASINS
dc.subjectABSOLUTE AGES
dc.subjectDETECTION ALGORITHMS
dc.subjectGLOBAL DATABASE
dc.subjectHIGH-RESOLUTION
dc.subjectIDENTIFICATION
dc.subjectTOPOGRAPHY
dc.subjectEQUILIBRIUM
dc.subjectCONSTRAINTS
dc.titleAutomatic Mapping of Small Lunar Impact Craters Using LRO-NAC Images
dc.typeJournal Article
dcterms.source.volume9
dcterms.source.number7
dcterms.source.titleEarth and Space Science
dc.date.updated2024-02-17T07:23:08Z
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.departmentResearch Excellence
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.facultyResearch Excellence
curtin.contributor.orcidLagain, Anthony [0000-0002-5391-3001]
curtin.contributor.orcidBenedix, Gretchen [0000-0003-0990-8878]
curtin.contributor.orcidBland, Phil [0000-0002-4681-7898]
curtin.contributor.orcidFairweather, John [0000-0002-3854-6311]
curtin.contributor.researcheridBenedix, Gretchen [L-1953-2018]
curtin.contributor.researcheridBland, Phil [M-9392-2018]
curtin.identifier.article-numberARTN e2021EA002177
dcterms.source.eissn2333-5084
curtin.contributor.scopusauthoridLagain, Anthony [57194439282]
curtin.contributor.scopusauthoridBenedix, Gretchen [6603638882]
curtin.contributor.scopusauthoridBland, Phil [7005534334]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record