Dislocation reactions dominated pop-in events in nanoindentation of Ni-based single crystal superalloys
Access Status
Authors
Date
2023Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
In this paper, from both experimental and atomistic simulation perspectives, we have systematically elaborated on the formation of stacking fault tetrahedrons that induces the pop-in events in Ni-based single crystal superalloys under nanoindentation. The magnitude of a displacement burst is proportional to the number and size of stacking fault tetrahedrons. The external work and strain energy stored in dislocations are further discussed in order to ascertain the energy conversion during pop-in events. The findings can provide new insights into a deep understanding of the pop-in events in Ni-based single crystal superalloys and benefit their wide applications in the aerospace industry.
Related items
Showing items related by title, author, creator and subject.
-
Nawaz, A.; Mao, W.; Lu, Chunsheng; Shen, Y. (2017)© 2017The nanoscale elastic-plastic deformation behavior of single crystal 6H-SiC was systematically investigated by using nanoindentation with a Berkovich indenter. The effect of loading rates on the critical pop-in load, ...
-
Nawaz, A.; Mao, W.; Lu, Chunsheng; Shen, Y. (2017)The nanoscale elastic-plastic response of single crystal 4H-SiC has been investigated by nanoindentationwith a Berkovich tip. The hardness (H) and elastic modulus (E) determined in the load-independent region were 36±2 ...
-
Nawaz, A.; Islam, B.; Mao, W.; Lu, Chunsheng; Shen, Y. (2018)The elastic-plastic deformation of 3C-SiC thin film was investigated by a nanoindenter equipped with the Berkovich tip. Transition from pure elastic to elastic-plastic deformation was evidenced at an approximate load of ...