Show simple item record

dc.contributor.authorZhang, K.
dc.contributor.authorWang, Song
dc.date.accessioned2017-01-30T11:12:53Z
dc.date.available2017-01-30T11:12:53Z
dc.date.created2016-09-12T08:36:40Z
dc.date.issued2009
dc.identifier.citationZhang, K. and Wang, S. 2009. A computational scheme for uncertain volatility model in option pricing. Applied Numerical Mathematics. 59 (8): pp. 1754-1767.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/9467
dc.identifier.doi10.1016/j.apnum.2009.01.004
dc.description.abstract

In this paper we develop a novel numerical scheme for a nonlinear partial differential equation arising from the uncertain volatility model in option pricing. The fitted finite volume method is developed for the space discretization with implicit scheme in time discretization, which results in a nonlinear discrete system. We prove that this method is consistent, stable and monotone, hence it ensures the convergence to the viscosity solution. We also propose an iteration scheme for the nonlinear discrete scheme and show its convergence property. Numerical experiments are implemented to verify the efficiency and usefulness of this method. © 2009 IMACS.

dc.publisherElsevier BV * North-Holland
dc.titleA computational scheme for uncertain volatility model in option pricing
dc.typeJournal Article
dcterms.source.volume59
dcterms.source.number8
dcterms.source.startPage1754
dcterms.source.endPage1767
dcterms.source.issn0168-9274
dcterms.source.titleApplied Numerical Mathematics
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record