Show simple item record

dc.contributor.authorReimers, J.R.
dc.contributor.authorLi, T.
dc.contributor.authorBirvé, A.P.
dc.contributor.authorYang, L.
dc.contributor.authorAragonès, A.C.
dc.contributor.authorFallon, T.
dc.contributor.authorKosov, D.S.
dc.contributor.authorDarwish, Nadim
dc.date.accessioned2024-04-09T04:49:24Z
dc.date.available2024-04-09T04:49:24Z
dc.date.issued2023
dc.identifier.citationReimers, J.R. and Li, T. and Birvé, A.P. and Yang, L. and Aragonès, A.C. and Fallon, T. and Kosov, D.S. et al. 2023. Controlling piezoresistance in single molecules through the isomerisation of bullvalenes. Nature Communications. 14 (1): pp. 6089-.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/94705
dc.identifier.doi10.1038/s41467-023-41674-z
dc.description.abstract

Nanoscale electro-mechanical systems (NEMS) displaying piezoresistance offer unique measurement opportunities at the sub-cellular level, in detectors and sensors, and in emerging generations of integrated electronic devices. Here, we show a single-molecule NEMS piezoresistor that operates utilising constitutional and conformational isomerisation of individual diaryl-bullvalene molecules and can be switched at 850 Hz. Observations are made using scanning tunnelling microscopy break junction (STMBJ) techniques to characterise piezoresistance, combined with blinking (current-time) experiments that follow single-molecule reactions in real time. A kinetic Monte Carlo methodology (KMC) is developed to simulate isomerisation on the experimental timescale, parameterised using density-functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) calculations. Results indicate that piezoresistance is controlled by both constitutional and conformational isomerisation, occurring at rates that are either fast (equilibrium) or slow (non-equilibrium) compared to the experimental timescale. Two different types of STMBJ traces are observed, one typical of traditional experiments that are interpreted in terms of intramolecular isomerisation occurring on stable tipped-shaped metal-contact junctions, and another attributed to arise from junction‒interface restructuring induced by bullvalene isomerisation.

dc.languageeng
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DE160101101
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP190100735
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleControlling piezoresistance in single molecules through the isomerisation of bullvalenes
dc.typeJournal Article
dcterms.source.volume14
dcterms.source.number1
dcterms.source.startPage6089
dcterms.source.issn2041-1723
dcterms.source.titleNature Communications
dc.date.updated2024-04-09T04:49:17Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidDarwish, Nadim [0000-0002-6565-1723]
dcterms.source.eissn2041-1723
curtin.contributor.scopusauthoridDarwish, Nadim [14031207900]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/