The global lead isotope system: Toward a new framework reflecting Earth's dynamic evolution
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
The U-Th-Pb system is perhaps one of the most versatile isotopic systems in use by Earth scientists, widely applied to both date and compositionally trace geological events through Earth history. However, the Pb isotope systematics of the Earth are subject to two major paradoxes. Assuming our planet evolved uniformly from a chondritic composition, all the present-day Earth chemical reservoirs should plot on the 4.55 Ga meteorite isochron, also known as the geochron; but in fact, all known reservoirs are more radiogenic (having excess 206Pb and 207Pb) than the carbonaceous chondrites, constituting the first Pb paradox. The second Pb paradox (also called the kappa conundrum) is the apparent difference between the measured 232Th/238U ratio (κ) of oceanic basalts and the time-integrated 232Th/238U ratio (κPb) predicted from the Pb isotope ratios. While significant progress has been made since the realization of the two Pb paradoxes over 50 years ago, the persistence of these issues highlights the limitations in our current understanding of the Earth's evolution with respect to U, Th and Pb, as we are neither able to ascertain the composition of the present-day bulk silicate Earth (BSE; comprising Earth's mantle and its crust) nor to determine the starting time(s) of U/Pb and Th/U fractionations in the mantle. In this contribution, we first review the Pb paradoxes and their proposed solutions. We then discuss the previously proposed Pb evolution models and establish a new framework based on a reassessment of global data and current understanding of Earth dynamics. Our model invokes the presence of distinct Pb isotope evolution paths for a diverse range of segregated components of the BSE, with the present-day upper continental crust being one of the end members. The model also features a two-stage Pb evolution for the silicate Earth, with a data-defined ca. 3.2 Ga start time for major compositional differentiation and remixing, possibly due to the initiation of global plate tectonics at that time. We readdress the first Pb paradox through recognizing that, to the first order, the Pb isotopic values of present-day Earth materials lie on a Pb differentiation line defined by our re-estimated present-day BSE and continental crust, and proposing that the data plot mostly to the right of the geochron due to second-order complications caused by both source mixing and fractionation of Earth materials. We argue that rocks found on Earth's surface mostly originated from more radiogenic reservoirs (with HIMU being an end member) at shallower levels, where long-term gravitational differentiation and subduction-led mantle remixing preferentially concentrated more radiogenic materials. We also largely mitigated the second Pb paradox through an updated κ vs. κpb plot using modern global databases, which shows a general agreement between the mean κ and κpb values. We further demonstrate that the choice of Pb evolution models has potentially profound implications when applying non-radiogenic Pb corrections during U-Pb dating of Earth materials.
Related items
Showing items related by title, author, creator and subject.
-
Huang, Hui-Qing (2012)High-K granites have become volumetrically important since at least Proterozoic. Their study bears important implications to crustal and tectonic evolutions. Despite of intensive research, sources and conditions for the ...
-
Tetley, M.G.; Li, Zheng-Xiang ; Matthews, K.J.; Williams, S.E.; Müller, R.D. (2020)Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments. ...
-
Bellucci, J.; Nemchin, A.; Whitehouse, M.; Snape, J.; Kielman, R.; Bland, Phil; Benedix, G. (2016)© 2015 Elsevier B.V. Determining the chronology and quantifying various geochemical reservoirs on planetary bodies is fundamental to understanding planetary accretion, differentiation, and global mass transfer. The Pb ...