A transferable quantum mechanical energy model for intermolecular interactions using a single empirical parameter
dc.contributor.author | Spackman, Peter | |
dc.contributor.author | Spackman, M.A. | |
dc.contributor.author | Gale, Julian | |
dc.date.accessioned | 2024-04-09T07:03:58Z | |
dc.date.available | 2024-04-09T07:03:58Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Spackman, P.R. and Spackman, M.A. and Gale, J.D. 2023. A transferable quantum mechanical energy model for intermolecular interactions using a single empirical parameter. IUCrJ. 10 (PART 6): pp. 754-765. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/94788 | |
dc.identifier.doi | 10.1107/S2052252523008941 | |
dc.description.abstract |
The calculation of intermolecular interactions in molecular crystals using model energies provides a unified route to understanding the complex interplay of driving forces in crystallization, elastic properties and more. Presented here is a new single-parameter interaction energy model (CE-1p), extending the previous CrystalExplorer energy model and calibrated using density functional theory (DFT) calculations at the !B97M-V/def2-QZVP level over 1157 intermolecular interactions from 147 crystal structures. The new model incorporates an improved treatment of dispersion interactions and polarizabilities using the exchange-hole dipole model (XDM), along with the use of effective core potentials (ECPs), facilitating application to molecules containing elements across the periodic table (from H to Rn). This new model is validated against high-level reference data with outstanding performance, comparable to state-of-the-art DFT methods for molecular crystal lattice energies over the X23 set (mean absolute deviation 3.6 kJ mol–1) and for intermolecular interactions in the S66x8 benchmark set (root mean-square deviation 3.3 kJ mol–1). The performance of this model is further examined compared to the GFN2-xTB tight-binding model, providing recommendations for the evaluation of intermolecular interactions in molecular crystal systems. | |
dc.language | eng | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/FL180100087 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | computational modelling | |
dc.subject | intermolecular interactions | |
dc.subject | lattice energy | |
dc.subject | molecular crystals | |
dc.title | A transferable quantum mechanical energy model for intermolecular interactions using a single empirical parameter | |
dc.type | Journal Article | |
dcterms.source.volume | 10 | |
dcterms.source.number | PART 6 | |
dcterms.source.startPage | 754 | |
dcterms.source.endPage | 765 | |
dcterms.source.issn | 2052-2525 | |
dcterms.source.title | IUCrJ | |
dc.date.updated | 2024-04-09T07:03:54Z | |
curtin.department | School of Molecular and Life Sciences (MLS) | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Spackman, Peter [0000-0002-6532-8571] | |
curtin.contributor.orcid | Gale, Julian [0000-0001-9587-9457] | |
dcterms.source.eissn | 2052-2525 | |
curtin.contributor.scopusauthorid | Spackman, Peter [56658699700] | |
curtin.contributor.scopusauthorid | Gale, Julian [7101993408] | |
curtin.repositoryagreement | V3 |