Bayesian fault detection, identification, and adaptation for GNSS applications
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
This contribution introduces a Bayesian framework of fault detection, identification, and adaptation (Bayesian DIA) methods for Global Navigation Satellite System (GNSS) applications. It provides an alternative to the classical DIA approach, which allows for leveraging the prior information about faults to enhance the robustness of DIA estimators and subsequently use posterior information to implement quality control. In this framework, the Bernoulli-Gaussian (BG) model is first used to construct the prior distribution of faults describing prior information about the mode and size of faults. Next, a DIA method based on Bayesian hypotheses testing (DIA-BHT) is proposed to process the additive faults in linear observation systems. Finally, the Bayesian DIA probability and credibility levels are introduced as measures for quality control. These probability levels describe the probabilities of decisions conditioned on the realities, which enables the prediction of the possibility of making a correct decision. The credibility levels denote the probabilities of realities conditioned on the decisions, which is helpful for the assessment of decision correctness. GNSS examples verified that the proposed Bayesian DIA method is robust for detecting and identifying faults with different modes and sizes.
Related items
Showing items related by title, author, creator and subject.
-
Habibi, Hamed ; Howard, Ian ; Habibi, R. (2020)©2020 Elsevier B.V. Inspired by the need for improving the reliability and safety of complex dynamic systems, this paper tackles the multiple faults detection problem using Dynamic Programming (DP) based methods under the ...
-
Habibi, H.; Howard, Ian ; Habibi, R. (2017)© 2017 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.In this paper, the fault detection of a latent fault in a sensor for a Markov jump system is studied. It is equivalent to detecting a change ...
-
Bayesian Fault Probability Estimation: Application in Wind Turbine Drivetrain Sensor Fault DetectionHabibi, Hamed; Howard, Ian ; Habibi, R. (2018)In this paper, the extension of the Bayesian framework for sensor fault detection of nonlinear systems proposed in [25] is studied utilizing particle filtering and the expectation maximization (EM) algorithm, in which the ...