An intrinsic descriptor of perovskite cobaltites for catalytic peroxymonosulfate activation toward water remediation
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
A series of strontium cobaltite perovskite oxides with various dopants (SrCo0.95M0.05O3-δ, M=Fe, Sc, Co, Zn, Gd) are designed for catalytic peroxymonosulfate (PMS) activation to degrade aqueous organic pollutants and the correlations between their crystalline structure and surface properties to catalytic activity were comprehensively investigated. SrCo0.95M0.05O3-δ displays three crystalline structures depending on the dopant metals and exhibits different catalytic activities. Among the structures and properties, Co-O bond length significantly affects the lattice oxygen diffusivity and Co2+/Co3+ redox capacity, governing the overall PMS activation, and is suggested as a descriptor for PMS activation. This study provides new insight to the reaction pathways and the structure-activity correlation for new design of effective perovskite oxides for PMS-based oxidation process toward wastewater treatment and other catalytic processes.
Related items
Showing items related by title, author, creator and subject.
-
Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)© 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
-
Khine, M.; Chen, L.; Zhang, S.; Lin, J.; Jiang, San Ping (2013)Hydrogen is a clean energy carrier for the future. More efficient, economic and small-scale syngas production has therefore important implications not only on the future sustainable hydrogen-based economy but also on the ...
-
Su, Chao ; Wang, Wei ; Shao, Zongping (2021)Conspectus Clean energy conversion technologies can power progress for achieving a sustainable future, while functional materials lie at the core of these technologies. In particular, highly efficient electrocatalysts ...