Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Mechanical properties of basalt macro fibre reinforced geopolymer concrete

    95797.pdf (6.724Mb)
    Access Status
    Open access
    Authors
    Huang, Zhijie
    So, Cek
    Chen, Wensu
    Htet, Paing
    Hao, Hong
    Date
    2024
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Huang, Z. and So, C.S. and Chen, W. and Htet, P.M. and Hao, H. 2024. Mechanical properties of basalt macro fibre reinforced geopolymer concrete. Construction and Building Materials. 438.
    Source Title
    Construction and Building Materials
    DOI
    10.1016/j.conbuildmat.2024.136974
    ISSN
    0950-0618
    Faculty
    Faculty of Science and Engineering
    School
    School of Civil and Mechanical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/FL180100196
    URI
    http://hdl.handle.net/20.500.11937/96033
    Collection
    • Curtin Research Publications
    Abstract

    Growing public environmental awareness leads to an increased focus on utilizing green and sustainable materials in infrastructure construction. Geopolymer concrete (GPC) and basalt macro fibres (BMFs) are promising construction materials due to their eco-friendly merits and excellent mechanical properties. In this study, a new type of BMFs reinforced GPC (BMF-GPC) was developed, and the compressive and flexural properties of BMF-GPC were investigated. The effects of BMF content and length on the mechanical properties of GPC were studied. It was found that with the addition of 2 % BMFs, the compressive and flexural toughness (energy absorption capacities) of GPC were greatly enhanced by up to 126 % and 965 %, respectively. Increasing the content and length of BMFs resulted in favourable outcomes for strain softening of GPC under compression and post-cracking behaviour of GPC under flexural loads, whilst having limited effects on the modulus of elasticity and flexural strength. Additionally, an analytical model was proposed to predict the compressive stress-strain behaviour of BMF-GPC, which could be used for the design of BMF-GPC structures.

    Related items

    Showing items related by title, author, creator and subject.

    • Flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix composites
      Sudarisman (2009)
      The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
    • Comparative Deflection Hardening Behavior of Fly Ash-Based Geopolymer Composite with the Conventional Cement-Based Composite
      Nematollahi, B.; Sanjayan, J.; Shaikh, Faiz (2014)
      This paper compares the behavior of a recently developed fly ash-based ductile fiber reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behavior in flexure with its cement-based ...
    • Mechanical properties of fibre reinforced high volume fly ash concretes
      Shafaei, Y.; Shaikh, Faiz; Sarker, Prabir; Barbhuiya, Salim (2015)
      This paper presents the mechanical properties of fibre reinforced high-volume fly ash (HVFA) concretes measured at 7 and 28 days. The effects of three class F fly ash contents of 40%, 50%, and 60% by wt. as a partial ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.