An exact cutting plane method for the Euclidean max-sum diversity problem
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
This paper aims to answer an open question recently posed in the literature, that is to find a fast exact method for solving the max-sum diversity problem, a nonconcave quadratic binary maximization problem. We show that, for Euclidean max-sum diversity problems (EMSDP), the distance matrix defining the quadratic term is always conditionally negative definite. This interesting property ensures that the cutting plane method is exact for (EMSDP), even in the absence of concavity. As such, the cutting plane method, which is primarily designed for concave maximisation problems, converges to the optimal solution of (EMDSP). The method was evaluated on several standard benchmark test sets, where it was shown to outperform other exact solution methods for (EMSDP), and is capable of solving two-coordinate problems of up to eighty-five thousand variables.
Related items
Showing items related by title, author, creator and subject.
-
Chong, Yen N. (2001)General routing problems deal with transporting some commodities and/or travelling along the axes of a given network in some optimal manner. In the modern world such problems arise in several contexts such as distribution ...
-
Yu, Changjun (2012)In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and ...
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...