Garnet Reference Materials for In Situ Lu-Hf Geochronology
Access Status
Authors
Date
2024Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
In situ garnet Lu-Hf geochronology has the potential to revolutionise the chronology of petrological and tectonic processes, yet there is a paucity of well-characterised reference materials to account for laser-induced matrix-dependant elemental fractionation. Here, we characterise two reference garnets GWA-1 (Lu ~ 7.0 μg g−1) and GWA-2 (Lu ~ 8.5 μg g−1) for in situ garnet Lu-Hf geochronology. Isochron ages from isotope dilution Lu-Hf analyses yield crystallisation ages of 1267.0 ± 3.0 Ma with initial 176Hf/177Hfi of 0.281415 ± 0.000012 (GWA-1), and 934.7 ± 1.4 Ma with 176Hf/177Hfi of 0.281386 ± 0.000013 (GWA-2). In situ Lu-Hf analyses yield inverse isochron ages up to 10% older than the known crystallisation age due to matrix effects between garnet and reference glass (NIST SRM 610) under different instrument tuning conditions. This apparent age offset is reproducible for both materials within the same session and can be readily corrected to obtain accurate ages. Our results demonstrate that GWA-1 and GWA-2 are robust reference materials that can be used to correct for matrix-analytical effects and also to assess the accuracy of in situ Lu-Hf garnet analyses across a range of commonly encountered garnet compositions.
Related items
Showing items related by title, author, creator and subject.
-
Doucet, Luc-Serge; Ionov, D.; Golovin, A. (2015)© 2014 Elsevier B.V. The formation age of the Siberian cratonic mantle is not well established as yet. Re-Os data on various mantle-derived materials have shown that it contains Archaean components, but the reported ...
-
Yakymchuk, C.; Brown, M.; Clark, C.; Korhonen, F.; Piccoli, P.; Siddoway, C.; Taylor, Richard; Vervoort, J. (2015)In this study, in situ U–Pb monazite ages and Lu–Hf garnet geochronology are used to distinguish mineral parageneses developed during Devonian–Carboniferous and Cretaceous events in migmatitic paragneiss and orthogneiss ...
-
Kaempf, Jonas ; Johnson, Tim ; Clark, Chris ; Alfing, Julian; Brown, M.; Lanari, P.; Rankenburg, Kai (2024)The oldest known evolved (felsic) rocks on Earth (c. 4.03 Ga) are found in the Acasta Gneiss Complex (AGC) in north-western Canada and represent a fundamental keystone in unravelling the geological processes governing ...