Show simple item record

dc.contributor.authorLu, S.
dc.contributor.authorJones, Eriita
dc.contributor.authorZhao, L.
dc.contributor.authorSun, Y.
dc.contributor.authorQin, K.
dc.contributor.authorLiu, J.
dc.contributor.authorLi, J.
dc.contributor.authorAbeysekara, P.
dc.contributor.authorMueller, N.
dc.contributor.authorOliver, S.
dc.contributor.authorO'Hehir, J.
dc.contributor.authorPeters, S.
dc.date.accessioned2024-11-12T01:40:33Z
dc.date.available2024-11-12T01:40:33Z
dc.date.issued2024
dc.identifier.citationLu, S. and Jones, E. and Zhao, L. and Sun, Y. and Qin, K. and Liu, J. and Li, J. et al. 2024. Onboard AI for Fire Smoke Detection Using Hyperspectral Imagery: An Emulation for the Upcoming Kanyini Hyperscout-2 Mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17: pp. 9629-9640.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96324
dc.identifier.doi10.1109/JSTARS.2024.3394574
dc.description.abstract

This article presents our research in the prelaunch phase of the Kanyini mission, which aims to implement an energy-efficient, AI-based system onboard for early fire smoke detection using hyperspectral imagery. Our approach includes three key components: developing a diverse hyperspectral training dataset from VIIRS imagery, groundwork in band selection and AI model preparation, and developing an emulation system. We adapted and evaluated our previously developed lightweight convolutional neural network model, VIB_SD, to meet the computational constraints of satellite deployment. The emulation system tests various onboard AI tasks and processes. Our comprehensive experiments demonstrate the feasibility and benefits of employing onboard AI for fire smoke detection, significantly improving downlink efficiency, energy consumption, and detection speed.

dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleOnboard AI for Fire Smoke Detection Using Hyperspectral Imagery: An Emulation for the Upcoming Kanyini Hyperscout-2 Mission
dc.typeJournal Article
dcterms.source.volume17
dcterms.source.startPage9629
dcterms.source.endPage9640
dcterms.source.issn1939-1404
dcterms.source.titleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.date.updated2024-11-12T01:40:32Z
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidJones, Eriita [0000-0002-8952-1982]
curtin.contributor.researcheridJones, Eriita [L-5937-2015]
dcterms.source.eissn2151-1535
curtin.contributor.scopusauthoridJones, Eriita [55448385300]
curtin.repositoryagreementV3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/