Trace-element heterogeneity in rutile linked to dislocation structures: Implications for Zr-in-rutile geothermometry
Access Status
Authors
Date
2023Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Remarks
This is the peer reviewed version of the following article: Verberne, R., van Schrojenstein Lantman, H. W., Reddy, S. M., Alvaro, M., Wallis, D., Fougerouse, D., Langone, A., Saxey, D. W., & Rickard, W. D. A. (2023). Trace-element heterogeneity in rutile linked to dislocation structures: Implications for Zr-in-rutile geothermometry. Journal of Metamorphic Geology, 41(1), 3–24, which has been published in final form at https://doi.org/10.1111/jmg.12686. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Collection
Abstract
The trace-element composition of rutile is commonly used to constrain P–T–t conditions for a wide range of metamorphic systems. However, recent studies have demonstrated the redistribution of trace elements in rutile via high-diffusivity pathways and dislocation-impurity associations related to the formation and evolution of microstructures. Here, we investigate trace-element migration in low-angle boundaries formed by dislocation creep in rutile within an omphacite vein of the Lago di Cignana unit (Western Alps, Italy). Zr-in-rutile thermometry and inclusions of quartz in rutile and of coesite in omphacite constrain the conditions of rutile deformation to around the prograde boundary from high pressure to ultra-high pressure (~2.7 GPa) at temperatures of 500–565°C. Crystal-plastic deformation of a large rutile grain results in low-angle boundaries that generate a total misorientation of ~25°. Dislocations constituting one of these low-angle boundaries are enriched in common and uncommon trace elements, including Fe and Ca, providing evidence for the diffusion and trapping of trace elements along the dislocation cores. The role of dislocation microstructures as fast-diffusion pathways must be evaluated when applying high-resolution analytical procedures as compositional disturbances might lead to erroneous interpretations for Ca and Fe. In contrast, our results indicate a trapping mechanism for Zr.
Related items
Showing items related by title, author, creator and subject.
-
Moore, Jo ; Beinlich, Andreas ; Porter, Jennifer K.; Talavera Rodriguez, Cristina ; Berndt, J.; Piazolo, S.; Austrheim, H.; Putnis, Andrew (2020)As a common constituent of metamorphic assemblages, rutile provides constraints on the timing and conditions of rock transformation at high resolution. However, very little is known about the links between trace element ...
-
Reddy, Steven; Timms, Nicholas Eric; Pantleon, W.; Trimby, P. (2007)The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations ...
-
Timms, Nicholas Eric; Kinny, Peter; Reddy, Steven; Evans, Katy; Clark, Chris; Healy, David (2011)A zircon grain in an orthopyroxene-garnet-phlogopite-zircon-rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal-plastic ...