Show simple item record

dc.contributor.authorNguyen, Hoa Van
dc.contributor.authorLuong, H.
dc.contributor.authorSgarioto, D.
dc.contributor.authorSkvortsov, A.
dc.contributor.authorArulampalam, S.
dc.contributor.authorDuffy, J.
dc.contributor.authorRanasinghe, D.C.
dc.date.accessioned2024-12-03T08:16:41Z
dc.date.available2024-12-03T08:16:41Z
dc.date.issued2023
dc.identifier.citationNguyen, H.V. and Luong, H. and Sgarioto, D. and Skvortsov, A. and Arulampalam, S. and Duffy, J. and Ranasinghe, D.C. 2023. Joint Estimation of Vessel Parameter-Motion and Sea State. In Proceedings of 2023 26th International Conference on Information Fusion (FUSION), 27-30 June 2023, Charleston, SC, USA.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96499
dc.identifier.doi10.23919/FUSION52260.2023.10224110
dc.description.abstract

We consider the problem of real-time estimation of sea state and wave-induced motions on a moving vessel using onboard inertial sensors without knowing vessel's dynamic parameters (i.e., draught and breadth). This is crucial for vessel operational planning and performance, preventing structure failure, emissions reduction and fuel economy. This work proposes a new estimation approach by reformulating the conventional problem of sea state and vessel motion estimation (unknown input into a known dynamic system) as an input-state-parameter estimation problem of mass-spring-damper systems. We exploit the strong correlations between a vessel's vertical displacement and its rotation to develop a new estimation algorithm-Parameter-Sharing Extended-Augmented Kalman Filter (PS-EAKF)-for the problem to estimate the unidentified vessel parameters together with vessel motion (heave and pitch) and sea state. Experimental data from a scale-model vessel in regular head seas demonstrate the effectiveness and robustness of the proposed approach.

dc.titleJoint Estimation of Vessel Parameter-Motion and Sea State
dc.typeConference Paper
dcterms.source.title2023 26th International Conference on Information Fusion, FUSION 2023
dcterms.source.conference2023 26th International Conference on Information Fusion (FUSION)
dcterms.source.conference-start-date27 June 2023
dcterms.source.conferencelocationCharleston, SC, USA
dc.date.updated2024-12-03T08:16:41Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidNguyen, Hoa Van [0000-0002-6878-5102]
dcterms.source.conference-end-date30 June 2023
curtin.contributor.scopusauthoridNguyen, Hoa Van [57205442806]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record