Show simple item record

dc.contributor.authorNguyen, Tran Thien Dat
dc.contributor.authorDo, C.T.
dc.contributor.authorNguyen, Hoa Van
dc.date.accessioned2024-12-03T08:20:59Z
dc.date.available2024-12-03T08:20:59Z
dc.date.issued2022
dc.identifier.citationNguyen, T.T.D. and Do, C.T. and Nguyen, H.V. 2022. An Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models. In Proceedings of 2022 11th International Conference on Control, Automation and Information Sciences, ICCAIS 2022, 21-24 Nov. 2022, Hanoi, Vietnam.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96500
dc.identifier.doi10.1109/ICCAIS56082.2022.9990549
dc.description.abstract

Recent development of the multi-sensor generalised labelled multi-Bernoulli (MS-GLMB) tracking algorithm allows joint estimation of target trajectories adjunct to clutter rate and detection probability. Nevertheless, it requires prior knowledge of new birth target distribution which might not be available in certain tracking scenarios. Conversely, another algorithm has been proposed to handle unknown birth statistics using multi-sensor measurement and a Gibbs sampler, but not be able to estimate clutter rate and detection probability. In this paper, we propose a multi-sensor multi-target tracking algorithm to handle unknown clutter rate, detection profile, and statistics of new birth targets. Our algorithm assumes linear Gaussian property on the dynamic and measurement models for closed-form analytic computation. Experiment with a 3-D tracking scenario demonstrates the robustness of our algorithm.

dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP200301507
dc.titleAn Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models
dc.typeConference Paper
dcterms.source.startPage84
dcterms.source.endPage89
dcterms.source.title2022 11th International Conference on Control, Automation and Information Sciences, ICCAIS 2022
dcterms.source.conference-start-date21 Nov 2022
dcterms.source.conferencelocationHanoi, Vietnam.
dc.date.updated2024-12-03T08:20:59Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidNguyen, Hoa Van [0000-0002-6878-5102]
curtin.contributor.orcidNguyen, Tran Thien Dat [0000-0001-9185-4009]
dcterms.source.conference-end-date24 Nov 2022
curtin.contributor.scopusauthoridNguyen, Hoa Van [57205442806]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record