When nitrogen reduction meets single-atom catalysts
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
Photocatalytic or electrocatalytic transformation of N2-to-NH3, serving as an alternative to the Haber-Bosch process that is energy- and capital-intensive, from abundant N2, H2O, solar energy, and clean and renewable electricity, offers great opportunities for sustainable agricultural production and portable carbon-free energy carrier. These new conversion technologies are highly dependent on the exploration of contributing photo/electrocatalysts, marking high activity, selectivity, and stability toward N2 fixation. Single-atom catalysts (SACs) have emerged as a new attractive frontier in NH3 photo/electrosynthesis, owing to their integrated merits of maximized atom utilization, unsaturated atom coordination, and tunable electronic structure. Herein, we provide an in-time summary of the recent advances in this dynamic research area. We start with a fundamental understanding of photo/electrocatalytic N2 reduction, in terms of NH3 quantification, and fundamental matrices being pursued. Followed on, we highlight and summarize synthesis strategies and analytical techniques for these SACs, with attention to elaborately diverse SACs supports. We further translate these mechanistic discussions by virtue of theoretical simulations, leveraging structure–property relationships in NH3 photo/electrosynthesis. Finally, we also discuss the bigger picture of photo/electrocatalytic NH3 production, among which N2 reduction challenges are assessed, shedding some light on the state-of-the-art SACs as photo/electrocatalysts for NH3 production through N2 fixation.
Related items
Showing items related by title, author, creator and subject.
-
Hou, Y.; Li, Xin Yong; Liu, P.; Zou, X.; Chen, G.; Yue, P. (2009)Highly oriented titania nanotube (TN) arrays with {1 0 1} crystal face were prepared on the surface of titanium substrate by liquid chemical deposition method. The obtained titania samples were characterized by X-ray ...
-
Wang, Wei ; Xu, M.; Xu, Xiaomin ; Zhou, W.; Shao, Zongping (2020)Photoelectrochemical (PEC) water splitting is an attractive strategy for the large-scale production of renewable hydrogen from water. Developing cost-effective, active and stable semiconducting photoelectrodes is extremely ...
-
Jiang, San Ping (2015)In high temperature solid oxide fuel cells (SOFCs), electrode/electrolyte interfaces play a critical role in the electrocatalytic activity and durability of the cells. In this study, thermally and electrochemically induced ...