Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    When nitrogen reduction meets single-atom catalysts

    Access Status
    Fulltext not available
    Authors
    Pang, Y.
    Su, Chao
    Xu, L.
    Shao, Zongping
    Date
    2023
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Pang, Y. and Su, C. and Xu, L. and Shao, Z. 2023. When nitrogen reduction meets single-atom catalysts. Progress in Materials Science. 132: ARTN 101044.
    Source Title
    Progress in Materials Science
    DOI
    10.1016/j.pmatsci.2022.101044
    ISSN
    0079-6425
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP200103332
    http://purl.org/au-research/grants/arc/DP200103315
    URI
    http://hdl.handle.net/20.500.11937/96651
    Collection
    • Curtin Research Publications
    Abstract

    Photocatalytic or electrocatalytic transformation of N2-to-NH3, serving as an alternative to the Haber-Bosch process that is energy- and capital-intensive, from abundant N2, H2O, solar energy, and clean and renewable electricity, offers great opportunities for sustainable agricultural production and portable carbon-free energy carrier. These new conversion technologies are highly dependent on the exploration of contributing photo/electrocatalysts, marking high activity, selectivity, and stability toward N2 fixation. Single-atom catalysts (SACs) have emerged as a new attractive frontier in NH3 photo/electrosynthesis, owing to their integrated merits of maximized atom utilization, unsaturated atom coordination, and tunable electronic structure. Herein, we provide an in-time summary of the recent advances in this dynamic research area. We start with a fundamental understanding of photo/electrocatalytic N2 reduction, in terms of NH3 quantification, and fundamental matrices being pursued. Followed on, we highlight and summarize synthesis strategies and analytical techniques for these SACs, with attention to elaborately diverse SACs supports. We further translate these mechanistic discussions by virtue of theoretical simulations, leveraging structure–property relationships in NH3 photo/electrosynthesis. Finally, we also discuss the bigger picture of photo/electrocatalytic NH3 production, among which N2 reduction challenges are assessed, shedding some light on the state-of-the-art SACs as photo/electrocatalysts for NH3 production through N2 fixation.

    Related items

    Showing items related by title, author, creator and subject.

    • Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with {1 0 1} crystal face
      Hou, Y.; Li, Xin Yong; Liu, P.; Zou, X.; Chen, G.; Yue, P. (2009)
      Highly oriented titania nanotube (TN) arrays with {1 0 1} crystal face were prepared on the surface of titanium substrate by liquid chemical deposition method. The obtained titania samples were characterized by X-ray ...
    • Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting
      Wang, Wei ; Xu, M.; Xu, Xiaomin ; Zhou, W.; Shao, Zongping (2020)
      Photoelectrochemical (PEC) water splitting is an attractive strategy for the large-scale production of renewable hydrogen from water. Developing cost-effective, active and stable semiconducting photoelectrodes is extremely ...
    • Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: An AFM and EIS Study
      Jiang, San Ping (2015)
      In high temperature solid oxide fuel cells (SOFCs), electrode/electrolyte interfaces play a critical role in the electrocatalytic activity and durability of the cells. In this study, thermally and electrochemically induced ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.