Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Piggy-back supervolcanoes-long-lived, voluminous, juvenile rhyolite volcanism in mesoproterozoic central Australia

    Access Status
    Open access via publisher
    Authors
    Smithies, R.
    Howard, H.
    Kirkland, Chris
    Korhonen, F.
    Medlin, C.
    Maier, W.
    Quentin De Gromard, R.
    Wingate, M.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Smithies, R. and Howard, H. and Kirkland, C. and Korhonen, F. and Medlin, C. and Maier, W. and Quentin De Gromard, R. et al. 2014. Piggy-back supervolcanoes-long-lived, voluminous, juvenile rhyolite volcanism in mesoproterozoic central Australia. Journal of Petrology. 56 (4): pp. 735-763.
    Source Title
    Journal of Petrology
    DOI
    10.1093/petrology/egv015
    ISSN
    0022-3530
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/9677
    Collection
    • Curtin Research Publications
    Abstract

    The Talbot Sub-basin is one of several bimodal volcanic depositional centres of the Mesoproterozoic Bentley Basin in central Australia. It is dominated by rocks of rhyolitic composition and includes ignimbrites, some forming large to super-eruption size deposits. Ferroan, incompatible trace element enriched, A-type compositions, anhydrous mineralogy and clear evidence for local rheomorphism indicate high eruption temperatures, with apparent zircon-saturation temperatures suggesting crystallization at >900°C. Comagmatic basalt is of mantle origin with minor Proterozoic basement contamination. The rhyolites cover the same range of Nd isotope compositions (εNd(1070) +1·24 to –0·96) and La/Nb ratios (1·2–2·1) as the basalts (εNd(1070) +2·1 to –1·1: La/Nb 1·2–2·3) and are compositionally far removed from all older basement and country-rock components (average εNd(1070) = –4, La/Nb = 10). The rhyolites and basalts are cogenetic through a process probably involving both fractional crystallization of mafic magmas and partial melting of recently crystallized mafic rock in a lower crustal intraplate, extraction of dacitic magmas to a voluminous upper crustal chamber system, and separation of rhyolite by processes involving rejuvenation and cannibalization of earlier chamber material. More than 230 000 km3 of parental basalt is required to form the >22 000 km3 of preserved juvenile rhyolite in the Talbot Sub-basin alone, which represents one of the most voluminous known felsic juvenile additions to intracontinental crust.Zircon U–Pb age components are complex and distinct from those of basement and country rock and contain antecrystic components reflecting dissolution–regrowth processes during periodic rejuvenation of earlier-emplaced chamber material without any significant interaction with country rock. The overall duration of magmatism was >30 Myr but can be divided into between two and four separate intervals, each probably of a few hundred thousand years’ duration and each probably reflecting one of the distinct lithostratigraphic groups defined in the sub-basin. Neither the composition nor style of felsic and mafic volcanism changes in any significant way from one volcanic event to the next and the range of zircon U–Pb ages indicates that each period utilized and cannibalized the same magma chamber. This volcanism forms a component of the 1090–1040 Ma Giles Event in central Australia, associated with magma-dominated extension at the nexus of the cratonic elements of Proterozoic Australia. This event cannot be reasonably reconciled with any putative plume activity but rather reflects the >200 Myr legacy of enhanced crustal geotherms that followed the final cratonic amalgamation of central Australia.

    Related items

    Showing items related by title, author, creator and subject.

    • Syn-volcanic cannibalisation of juvenile felsic crust: Superimposed giant 18O-depleted rhyolite systems in the hot and thinned crust of Mesoproterozoic central Australia
      Smithies, R.; Kirkland, Chris; Cliff, J.; Howard, H.; Quentin de Gromard, R. (2015)
      Eruptions of voluminous 18O-depleted rhyolite provide the best evidence that the extreme conditions required to produce and accumulate huge volumes of felsic magma can occur in the upper 10 km of the crust. Mesoproterozoic ...
    • Geology, geochemistry, geochronology, and economic potential of Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes segments of the Archibarca lineament, northwest Argentina
      Richards, J.; Jourdan, Fred; Creaser, R.; Maldonado, G.; DuFrane, S. (2013)
      This study presents new geochemical, geochronological, isotopic, and mineralogical data, combined with new geological mapping for a 2400 km2 area of Neogene volcanic rocks in northwestern Argentina near the border with ...
    • Petrogenesis of the A-type, mesoproterozoic intra-caldera rheomorphic Kathleen Ignimbrite and Comagmatic Rowland suite intrusions, West Musgrave Province, Central Australia: Products of extreme fractional crystallization in a failed rift setting
      Medlin, C.; Jowitt, S.; Cas, R.; Smithies, R.; Kirkland, Chris; Maas, R.; Raveggi, M.; Howard, H.; Wingate, M. (2014)
      The Pussy Cat Group rhyolites of the Mesoproterozoic west Musgrave Province of central Australia, a constituent part of the Bentley Supergroup, were deposited during the c. 1085–1040 Ma Ngaanyatjarra Rift and Giles events, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.