A Combination of Classification Robust Adaptive Kalman Filter with PPP-RTK to Improve Fault Detection for Integrity Monitoring of Autonomous Vehicles
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Real-time integrity monitoring (IM) is essential for autonomous vehicle positioning, requiring high availability and manageable computational load. This research proposes using precise point positioning real-time kinematic (PPP-RTK) as the positioning method, combined with an improved classification adaptive Kalman filter (CAKF) for processing. PPP-RTK enhances IM availability by allowing undifferenced and uncombined observations, enabling individual observation exclusion during fault detection and exclusion (FDE). The CAKF reduces FDE computational load by using a robustness test instead of traditional FDE methods, improving precision and availability in protection level estimation. Epoch-wise weighting adjustments in the robustness test create a more accurate stochastic model, aided by an adaptive unit weight variance (UWV) calculated with a sliding window, achieving a 7–28% UWV reduction. Three test scenarios with up to four simultaneous faults in code and phase observations, ranging from 1 to 200 m and 0.4 to 20 m, respectively, demonstrated successful identification and de-weighting of faults, resulting in maximum positioning errors of 6 mm (horizontal) and 11 mm (vertical). The method reduced FDE computational load by 50–99.999% compared to other approaches.
Related items
Showing items related by title, author, creator and subject.
-
Elsayed, Hassan; El-Mowafy, Ahmed ; Allahvirdi-Zadeh, Amir; Wang, K. (2025)Developing advanced receiver autonomous integrity monitoring (ARAIM) for ground real-time precise positioning applications such as autonomous vehicles presents computational challenges, particularly in calculating real-time ...
-
Lisk, Mark (2012)A comprehensive examination of the hydrocarbon charge and formation water history of the central Vulcan Sub-basin, Timor Sea has been completed and a model developed to describe the evolution of the region’s petroleum ...
-
El-Mowafy, Ahmed ; Wang, Kan; El-Sayed, Hassan (2022)Integrity monitoring (IM) is a vital task for precise real-time positioning in road transportation, autonomous driving, and drones, where safety is essential. IM has the main tasks of detection and exclusion of faulty ...