Show simple item record

dc.contributor.authorSperschneider, J.
dc.contributor.authorGardiner, D.
dc.contributor.authorDodds, P.
dc.contributor.authorTini, F.
dc.contributor.authorCovarelli, L.
dc.contributor.authorSingh, Karambir
dc.contributor.authorManners, J.
dc.contributor.authorTaylor, J.
dc.date.accessioned2017-01-30T11:15:24Z
dc.date.available2017-01-30T11:15:24Z
dc.date.created2016-10-18T19:30:21Z
dc.date.issued2016
dc.identifier.citationSperschneider, J. and Gardiner, D. and Dodds, P. and Tini, F. and Covarelli, L. and Singh, K. and Manners, J. et al. 2016. EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytologist. 210 (2): pp. 743-761.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/9851
dc.identifier.doi10.1111/nph.13794
dc.description.abstract

Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au.

dc.publisherWiley-Blackwell Publishing Ltd.
dc.titleEffectorP: Predicting fungal effector proteins from secretomes using machine learning
dc.typeJournal Article
dcterms.source.volume210
dcterms.source.number2
dcterms.source.startPage743
dcterms.source.endPage761
dcterms.source.issn0028-646X
dcterms.source.titleNew Phytologist
curtin.departmentCentre for Crop Disease Management
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record